Suppr超能文献

作为阿尔茨海默病的数字生物标志物,对记忆相似性任务的认知建模。

Cognitive modeling of the Mnemonic Similarity Task as a digital biomarker for Alzheimer's disease.

机构信息

Department of Neurobiology and Behavior, 1424 Biological Sciences III, University of California, Irvine, Irvine, California, USA.

Department of Cognitive Science, 3151 Social Sciences Plaza A, University of California, Irvine, Irvine, California, USA.

出版信息

Alzheimers Dement. 2024 Oct;20(10):6935-6947. doi: 10.1002/alz.14163. Epub 2024 Sep 6.

Abstract

BACKGROUND

The Mnemonic Similarity Task (MST) is a popular memory task designed to assess hippocampal integrity. We assessed whether analyzing MST performance using a multinomial processing tree (MPT) cognitive model could detect individuals with elevated Alzheimer's disease (AD) biomarker status prior to cognitive decline.

METHOD

We analyzed MST data from >200 individuals (young, cognitively healthy older adults and individuals with mild cognitive impairment [MCI]), a subset of which also had existing cerebrospinal fluid (CSF) amyloid beta (Aβ) and phosphorylated tau (pTau) data using both traditional and model-derived approaches. We assessed how well each could predict age group, memory ability, MCI status, Aβ, and pTau status using receiver operating characteristic analyses.

RESULTS

Both approaches predicted age group membership equally, but MPT-derived metrics exceeded traditional metrics in all other comparisons.

DISCUSSION

A MPT model of the MST can detect individuals with AD prior to cognitive decline, making it a potentially useful tool for screening and monitoring older adults during the asymptomatic phase of AD.

HIGHLIGHTS

The MST, along with cognitive modeling, identifies individuals with memory deficits and cognitive impairment. Cognitive modeling of the MST identifies individuals with increased AD biomarkers prior to changes in cognitive function. The MST is a digital biomarker that identifies individuals at high risk of AD.

摘要

背景

记忆符相似性任务(MST)是一种流行的记忆任务,旨在评估海马体的完整性。我们评估了使用多项处理树(MPT)认知模型分析 MST 性能是否可以在认知能力下降之前发现阿尔茨海默病(AD)生物标志物水平升高的个体。

方法

我们分析了来自> 200 名个体(年轻、认知健康的老年人和轻度认知障碍 [MCI] 个体)的 MST 数据,其中一部分也有现有的脑脊液(CSF)淀粉样蛋白β(Aβ)和磷酸化 tau(pTau)数据,使用传统和模型衍生的方法。我们使用接收者操作特征分析评估了每种方法预测年龄组、记忆能力、MCI 状态、Aβ 和 pTau 状态的能力。

结果

两种方法预测年龄组的能力相当,但 MPT 衍生的指标在所有其他比较中均优于传统指标。

讨论

MST 的 MPT 模型可以在认知能力下降之前识别出 AD 患者,使其成为筛查和监测 AD 无症状期老年人的潜在有用工具。

重点

MST 与认知建模一起,可以识别出有记忆缺陷和认知障碍的个体。MST 的认知建模可以在认知功能发生变化之前识别出 AD 生物标志物增加的个体。MST 是一种数字生物标志物,可以识别出 AD 风险较高的个体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc40/11485396/623a91c3665f/ALZ-20-6935-g004.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验