Suppr超能文献

微小 RNA 作为人类泌尿生殖系统癌症有前途的诊断和预后标志物。

MicroRNAs as promising diagnostic and prognostic markers for the human genitourinary cancer.

机构信息

Institute of Biomedical Chemistry, Moscow, Russia.

出版信息

Biomed Khim. 2024 Aug;70(4):191-205. doi: 10.18097/PBMC20247004191.

Abstract

Genitourinary cancer (GUC) represents more than one fifth of all human cancers. This makes the development of approaches to its early diagnosis an important task of modern biomedicine. Circulating microRNAs, short (17-25 nucleotides) non-coding RNA molecules found in human biological fluids and performing a regulatory role in the cell, are considered as promising diagnostic and prognostic biomarkers of cancers, including GUC. In this review we have considered the current state of research aimed at assessing microRNAs as biomarkers of such human GUC types as malignant tumors of the bladder, kidney, prostate, testicles, ovaries, and cervix. A special attention has been paid to studies devoted to the identification of microRNAs in urine as a surrogate "liquid biopsy" that may provide the simplest and cheapest approach to mass non-invasive screening of human GUC. The use of microRNA panels instead of single types of microRNA generally leads to higher sensitivity and specificity of the developed diagnostic tests. However, to date, work on the microRNAs assessment as biomarkers of human GUC is still of a research nature, and the further introduction of diagnostic tests based on microRNAs into practice requires successful clinical trials.

摘要

泌尿生殖系统癌症(GUC)占所有人类癌症的五分之一以上。这使得开发其早期诊断方法成为现代生物医学的重要任务。循环 microRNAs 是人类生物体液中发现的短(17-25 个核苷酸)非编码 RNA 分子,在细胞中发挥调节作用,被认为是癌症(包括 GUC)的有前途的诊断和预后生物标志物。在这篇综述中,我们研究了评估 microRNAs 作为膀胱癌、肾癌、前列腺癌、睾丸癌、卵巢癌和宫颈癌等人类 GUC 类型的生物标志物的研究现状。特别关注了尿液中 microRNAs 作为替代“液体活检”的鉴定研究,这种方法可能为人类 GUC 的大规模非侵入性筛查提供最简单、最便宜的方法。使用 microRNA 谱而不是单一类型的 microRNA 通常会提高开发的诊断测试的灵敏度和特异性。然而,迄今为止,关于 microRNAs 作为人类 GUC 生物标志物的评估工作仍处于研究性质,进一步将基于 microRNAs 的诊断测试引入实践需要成功的临床试验。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验