Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan.
Institute for protein research, Osaka University, Suita, Osaka, Japan.
mBio. 2024 Oct 16;15(10):e0126124. doi: 10.1128/mbio.01261-24. Epub 2024 Sep 6.
The marine bacterium possesses a polar flagellum driven by a sodium ion flow. The main components of the flagellar motor are the stator and rotor. The C-ring and MS-ring, which are composed of FliG and FliF, respectively, are parts of the rotor. Here, we purified an MS-ring composed of FliF-FliG fusion proteins and solved the near-atomic resolution structure of the S-ring-the upper part of the MS-ring-using cryo-electron microscopy. This is the first report of an S-ring structure from , whereas, previously, only those from have been reported. The S-ring structure reveals novel features compared with that of , such as tilt angle differences of the RBM3 domain and the β-collar region, which contribute to the vertical arrangement of the upper part of the β-collar region despite the diversity in the RBM3 domain angles. Additionally, there is a decrease of the inter-subunit interaction between RBM3 domains, which influences the efficiency of the MS-ring formation in different bacterial species. Furthermore, although the inner-surface electrostatic properties of and S-rings are altered, the residues potentially interacting with other flagellar components, such as FliE and FlgB, are well structurally conserved in the S-ring. These comparisons clarified the conserved and non-conserved structural features of the MS-ring across different species.IMPORTANCEUnderstanding the structure and function of the flagellar motor in bacterial species is essential for uncovering the mechanisms underlying bacterial motility and pathogenesis. Our study revealed the structure of the S-ring, a part of its polar flagellar motor, and highlighted its unique features compared with the well-studied S-ring. The observed differences in the inter-subunit interactions and in the tilt angles between the and S-rings highlighted the species-specific variations and the mechanism for the optimization of MS-ring formation in the flagellar assembly. By concentrating on the region where the S-ring and the rod proteins interact, we uncovered conserved residues essential for the interaction. Our research contributes to the advancement of bacterial flagellar biology.
海洋细菌具有由钠离子流驱动的极性鞭毛。鞭毛马达的主要组件是定子和转子。C 环和 MS 环分别由 FliG 和 FliF 组成,是转子的一部分。在这里,我们纯化了一种由 FliF-FliG 融合蛋白组成的 MS 环,并使用冷冻电子显微镜解决了 MS 环上部的 S 环的近原子分辨率结构。这是首次报道来自 的 S 环结构,而以前仅报道过来自 的 S 环结构。与 相比, 的 S 环结构具有新颖的特征,例如 RBM3 结构域和β-环区的倾斜角度差异,这有助于尽管 RBM3 结构域角度不同,但β-环区的上部仍呈垂直排列。此外,RBM3 结构域之间的亚基相互作用减少,这会影响不同细菌物种中 MS 环形成的效率。此外,尽管 和 S 环的内表面静电特性发生了变化,但与其他鞭毛成分(如 FliE 和 FlgB)相互作用的残基在 S 环中结构上得到了很好的保守。这些比较阐明了不同物种中 MS 环的保守和非保守结构特征。
重要性
了解细菌物种中鞭毛马达的结构和功能对于揭示细菌运动和发病机制的机制至关重要。我们的研究揭示了其极性鞭毛马达的 S 环的结构,并强调了与研究充分的 S 环相比其独特的特征。观察到的 S 环之间亚基相互作用和倾斜角度的差异突出了物种特异性的变化以及优化鞭毛组装中 MS 环形成的机制。通过集中研究 S 环和杆状蛋白相互作用的区域,我们发现了对相互作用至关重要的保守残基。我们的研究为细菌鞭毛生物学的发展做出了贡献。