Suppr超能文献

用于通过硫离子氧化反应辅助海水分解实现节能制氢的疏气/亲水性硫化镍铁纳米阵列

Aerophobic/Hydrophilic Nickel-Iron Sulfide Nanoarrays for Energy-Saving Hydrogen Production from Seawater Splitting Assisted by Sulfion Oxidation Reaction.

作者信息

Zhang Jiayi, Zeng Yu, Xiao Tanyang, Tian Song, Jiang Jing

机构信息

School of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China.

出版信息

Inorg Chem. 2024 Sep 23;63(38):17662-17671. doi: 10.1021/acs.inorgchem.4c02480. Epub 2024 Sep 6.

Abstract

Electrolysis of infinite seawater is a promising and sustainable approach for clean hydrogen production. However, it remains a big challenge to accomplish corrosion-resistant and chlorine-free seawater electrolysis at low power input. Herein, the bimetallic nickel-iron sulfide-based electrocatalytic nanoarrays are constructed by a facile hydrothermal sulfidation of redox-etched iron foam (IF), which manifests an effective and reliable strategy for the sulfion oxidation reaction (SOR) to assist alkaline seawater electrolysis for the achievement of energy-saving hydrogen production and value-added sulfion upcycling. The resulting NiFeS/FeNi/IF required 0.353 and 0.415 V vs RHE for SOR at current densities of 50 and 100 mA cm, which are considerably lower than the theoretical potential of the oxygen evolution reaction (OER, 1.23 V vs RHE). spectroscopy analysis demonstrated efficient sulfion oxidation on the surface of NiFeS/FeNi/IF. Furthermore, the NiFeS/FeNi/IF-assembled electrolyzer delivered a greatly reduced cell voltage of 0.92 V at 50 mA cm and maintains excellent durability for 30 h, achieving high Faradaic efficiency for both hydrogen production and sulfion degradation. In addition, under natural sunlight (660.4 W m), only a 0.947 V voltage of the solar panel smoothly powers the SOR-coupled seawater electrolysis for green hydrogen production and economic sulfur recovery.

摘要

对无限量海水进行电解是一种很有前景的可持续清洁制氢方法。然而,在低功率输入下实现耐腐蚀且无氯的海水电解仍然是一个巨大的挑战。在此,通过对氧化还原蚀刻泡沫铁(IF)进行简便的水热硫化,构建了双金属硫化镍铁基电催化纳米阵列,这为硫离子氧化反应(SOR)辅助碱性海水电解以实现节能制氢和增值硫离子升级循环提供了一种有效且可靠的策略。所得的NiFeS/FeNi/IF在电流密度为50和100 mA cm²时,相对于可逆氢电极(RHE)的SOR所需过电位分别为0.353和0.415 V,这远低于析氧反应(OER,相对于RHE为1.23 V)的理论电位。光谱分析表明在NiFeS/FeNi/IF表面发生了高效的硫离子氧化。此外,由NiFeS/FeNi/IF组装的电解槽在50 mA cm²时的电池电压大幅降低至0.92 V,并保持30小时的优异耐久性,在制氢和硫离子降解方面均实现了高法拉第效率。此外,在自然阳光(660.4 W m²)下,仅需太阳能电池板0.947 V的电压就能平稳地为耦合SOR的海水电解提供动力,以实现绿色制氢和经济的硫回收。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验