Jiang Ru-Jian, Tang Yun-Long, Liu Su-Zhen, Zhu Mei-Xiong, Li Changji, Feng Yan-Peng, Gong Feng-Hui, Wang Jing-Hui, Lv Xiao-Dong, Chen Shuang-Jie, Wang Yu-Jia, Zhu Yin-Lian, Ma Xiu-Liang
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China.
School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China.
Nano Lett. 2024 Sep 18;24(37):11714-11721. doi: 10.1021/acs.nanolett.4c03382. Epub 2024 Sep 6.
Antiferroelectric materials have shown great potential in electronic devices benefiting from the reversible phase transition between ferroelectric and antiferroelectric phases. Understanding the dipole arrangements and clear phase transition pathways is crucial for design of antiferroelectric materials-based energy storage and conversion devices. However, the specific phase transition details remain largely unclear and even controversial to date. Here, we have grown a series of PbZrO on SrTiO substrates and elucidated the fine atom structures and phase transition pathways using atomic-resolution transmission electron microscopy. Specifically, a roadmap for ferroelectric to antiferroelectric phase transitions, here with increasing film thickness, is determined as ferroelectric rhombohedral (3)-ferroelectric monoclinic ()-ferrielectric orthorhombic (2)-antiferroelectric orthorhombic (), where and 2 phases act as structural bridges. Moreover, the phase transition pathway is strongly related to the synergistic effect of oxygen octahedral tilting and cation displacement. These findings provide an insightful understanding for the theories and related properties of antiferroelectrics.
反铁电材料在电子器件中展现出巨大潜力,这得益于铁电相和反铁电相之间的可逆相变。理解偶极排列和清晰的相变路径对于基于反铁电材料的能量存储与转换器件的设计至关重要。然而,具体的相变细节至今仍很大程度上不清楚,甚至存在争议。在此,我们在SrTiO衬底上生长了一系列PbZrO,并使用原子分辨率透射电子显微镜阐明了精细的原子结构和相变路径。具体而言,随着薄膜厚度增加,铁电相向反铁电相转变的路线图确定为铁电菱面体(3)-铁电单斜晶系()-铁电正交晶系(2)-反铁电正交晶系(),其中和2相充当结构桥梁。此外,相变路径与氧八面体倾斜和阳离子位移的协同效应密切相关。这些发现为反铁电体的理论及相关特性提供了深刻的理解。