Suppr超能文献

剧烈运动训练结合促红细胞生成素会引起红细胞容量扩张介导的血容量增加,并改变全身和骨骼肌铁稳态。

Strenuous training combined with erythropoietin induces red cell volume expansion-mediated hypervolemia and alters systemic and skeletal muscle iron homeostasis.

机构信息

Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States.

Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States.

出版信息

Am J Physiol Regul Integr Comp Physiol. 2024 Nov 1;327(5):R473-R478. doi: 10.1152/ajpregu.00164.2024. Epub 2024 Sep 6.

Abstract

Strenuous physical training increases total blood volume (BV) through expansion of plasma volume (PV) and red cell volume (RCV). In contrast, exogenous erythropoietin (EPO) treatment increases RCV but decreases PV, rendering BV stable or slightly decreased. This study aimed to determine the combined effects of strenuous training and EPO treatment on BV and markers of systemic and muscle iron homeostasis. In this longitudinal study, eight healthy nonanemic males were treated with EPO (50 IU/kg body mass, three times per week, sc) across 28 days of strenuous training (4 days/wk, exercise energy expenditures of 1,334 ± 24 kcal/day) while consuming a controlled, energy-balanced diet providing 39 ± 4 mg/day iron. Before (PRE) and after (POST) intervention, BV compartments were measured using carbon monoxide rebreathing, and markers of iron homeostasis were assessed in blood and skeletal muscle (vastus lateralis). Training + EPO increased ( < 0.01) RCV (13 ± 6%) and BV (5 ± 4%), whereas PV remained unchanged ( = 0.86). The expansion of RCV was accompanied by a large decrease in whole body iron stores, as indicated by decreased ( < 0.01) ferritin (-77 ± 10%) and hepcidin (-49 ± 23%) concentrations in plasma. Training + EPO decreased ( < 0.01) muscle protein abundance of ferritin (-25 ± 20%) and increased ( < 0.05) transferrin receptor (47 ± 56%). These novel findings illustrate that strenuous training combined with EPO results in both increased total oxygen-carrying capacity and hypervolemia in young healthy males. The decrease in plasma and muscle ferritin suggests that the marked upregulation of erythropoiesis alters systemic and tissue iron homeostasis, resulting in a decline in whole body and skeletal muscle iron stores. Strenuous exercise training combined with erythropoietin (EPO) treatment increases blood volume, driven exclusively by red cell volume expansion. This hematological adaptation results in increased total oxygen-carrying capacity and hypervolemia. The marked upregulation of erythropoiesis with training + EPO reduces whole body iron stores and circulating hepcidin concentrations. The finding that the abundance of ferritin in muscle decreased after training + EPO suggests that muscle may release iron to support red blood cell production.

摘要

剧烈的身体训练通过增加血浆容量(PV)和红细胞容量(RCV)来增加总血容量(BV)。相比之下,外源性促红细胞生成素(EPO)治疗会增加 RCV 但减少 PV,使 BV 保持稳定或略有下降。本研究旨在确定剧烈训练和 EPO 治疗对 BV 以及全身和肌肉铁稳态标志物的联合影响。在这项纵向研究中,八名健康非贫血男性在剧烈训练(每周 4 天,运动能量消耗为 1334±24 卡路里/天)的同时接受 EPO(50IU/kg 体重,每周 3 次,sc)治疗,持续 28 天,同时摄入控制能量平衡的饮食,提供 39±4mg/天的铁。在干预之前(PRE)和之后(POST),使用一氧化碳再呼吸测量 BV compartments,并且在血液和骨骼肌(股外侧肌)中评估铁稳态标志物。训练+EPO 增加了(<0.01)RCV(13±6%)和 BV(5±4%),而 PV 保持不变(=0.86)。RCV 的扩张伴随着全身铁储存的大量减少,如血浆中 ferritin(<0.01)和 hepcidin(<0.01)浓度的减少所表明的。训练+EPO 降低了(<0.01)肌肉铁蛋白 ferritin(<0.01)的丰度(-25±20%),并增加了(<0.05)转铁蛋白受体(47±56%)。这些新发现表明,剧烈训练与 EPO 联合使用会导致年轻健康男性的总携氧能力和血容量增加。血浆和肌肉 ferritin 的减少表明,红细胞生成的显著上调改变了全身和组织铁稳态,导致全身和骨骼肌铁储存减少。剧烈运动训练与促红细胞生成素(EPO)联合治疗增加了血容量,仅由红细胞容量扩张驱动。这种血液学适应导致总携氧能力增加和血容量增加。训练+EPO 中红细胞生成的显著上调会降低全身铁储存和循环 hepcidin 浓度。训练+EPO 后肌肉 ferritin 丰度下降的发现表明,肌肉可能会释放铁以支持红细胞生成。

相似文献

1
Strenuous training combined with erythropoietin induces red cell volume expansion-mediated hypervolemia and alters systemic and skeletal muscle iron homeostasis.
Am J Physiol Regul Integr Comp Physiol. 2024 Nov 1;327(5):R473-R478. doi: 10.1152/ajpregu.00164.2024. Epub 2024 Sep 6.
3
Alterations of systemic and muscle iron metabolism in human subjects treated with low-dose recombinant erythropoietin.
Blood. 2009 Jun 25;113(26):6707-15. doi: 10.1182/blood-2008-09-178095. Epub 2009 Mar 4.
10
Erythropoiesis with endurance training: dynamics and mechanisms.
Am J Physiol Regul Integr Comp Physiol. 2017 Jun 1;312(6):R894-R902. doi: 10.1152/ajpregu.00012.2017. Epub 2017 Apr 5.

本文引用的文献

3
Effects of altitude and recombinant human erythropoietin on iron metabolism: a randomized controlled trial.
Am J Physiol Regul Integr Comp Physiol. 2021 Aug 1;321(2):R152-R161. doi: 10.1152/ajpregu.00070.2021. Epub 2021 Jun 23.
4
Exercise training decreases whole-body and tissue iron storage in adults with obesity.
Exp Physiol. 2021 Apr;106(4):820-827. doi: 10.1113/EP089272. Epub 2021 Feb 17.
6
Skeletal muscle ferritin abundance is tightly related to plasma ferritin concentration in adults with obesity.
Exp Physiol. 2020 Nov;105(11):1808-1814. doi: 10.1113/EP089010. Epub 2020 Sep 16.
7
Regulation of Red Blood Cell Volume with Exercise Training.
Compr Physiol. 2018 Dec 13;9(1):149-164. doi: 10.1002/cphy.c180004.
9
Iron, Zinc, and Physical Performance.
Biol Trace Elem Res. 2019 Mar;188(1):135-139. doi: 10.1007/s12011-018-1479-7. Epub 2018 Aug 15.
10
Prediction equation for estimating total daily energy requirements of special operations personnel.
J Int Soc Sports Nutr. 2018 Apr 5;15:15. doi: 10.1186/s12970-018-0219-x. eCollection 2018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验