Suppr超能文献

用于估算特种作战人员每日总能量需求的预测方程。

Prediction equation for estimating total daily energy requirements of special operations personnel.

作者信息

Barringer N D, Pasiakos S M, McClung H L, Crombie A P, Margolis L M

机构信息

1Military Nutrition Division, US Army Research Institute of Environmental Medicine, 10 General Greene Avenue, Bldg. 42, Natick, MA 01760 USA.

2Biophysics and Biomedical Modeling Division, US Army Research Institute of Environmental Medicine, Natick, MA USA.

出版信息

J Int Soc Sports Nutr. 2018 Apr 5;15:15. doi: 10.1186/s12970-018-0219-x. eCollection 2018.

Abstract

BACKGROUND

Special Operations Forces (SOF) engage in a variety of military tasks with many producing high energy expenditures, leading to undesired energy deficits and loss of body mass. Therefore, the ability to accurately estimate daily energy requirements would be useful for accurate logistical planning.

PURPOSE

Generate a predictive equation estimating energy requirements of SOF.

METHODS

Retrospective analysis of data collected from SOF personnel engaged in 12 different SOF training scenarios. Energy expenditure and total body water were determined using the doubly-labeled water technique. Physical activity level was determined as daily energy expenditure divided by resting metabolic rate. Physical activity level was broken into quartiles (0 = mission prep, 1 = common warrior tasks, 2 = battle drills, 3 = specialized intense activity) to generate a physical activity factor (PAF). Regression analysis was used to construct two predictive equations (Model A; body mass and PAF, Model B; fat-free mass and PAF) estimating daily energy expenditures.

RESULTS

Average measured energy expenditure during SOF training was 4468 (range: 3700 to 6300) Kcal·d-. Regression analysis revealed that physical activity level ( = 0.91;  < 0.05) and body mass ( = 0.28;  < 0.05; Model A), or fat-free mass (FFM;  = 0.32;  < 0.05; Model B) were the factors that most highly predicted energy expenditures. Predictive equations coupling PAF with body mass (Model A) and FFM (Model B), were correlated ( = 0.74 and  = 0.76, respectively) and did not differ [mean ± SEM: Model A; 4463 ± 65 Kcal·d, Model B; 4462 ± 61 Kcal·d] from DLW measured energy expenditures.

CONCLUSION

By quantifying and grouping SOF training exercises into activity factors, SOF energy requirements can be predicted with reasonable accuracy and these equations used by dietetic/logistical personnel to plan appropriate feeding regimens to meet SOF nutritional requirements across their mission profile.

摘要

背景

特种作战部队(SOF)执行各种军事任务,其中许多任务会产生较高的能量消耗,导致不必要的能量不足和体重减轻。因此,准确估计每日能量需求的能力对于精确的后勤规划很有用。

目的

生成一个估计特种作战部队能量需求的预测方程。

方法

对从参与12种不同特种作战部队训练场景的人员收集的数据进行回顾性分析。使用双标记水技术测定能量消耗和全身水含量。身体活动水平通过每日能量消耗除以静息代谢率来确定。身体活动水平分为四分位数(0 =任务准备,1 =普通战士任务,2 =战斗演习,3 =专门的高强度活动)以生成身体活动因子(PAF)。回归分析用于构建两个预测每日能量消耗的预测方程(模型A;体重和PAF,模型B;去脂体重和PAF)。

结果

特种作战部队训练期间平均测量的能量消耗为4468(范围:3700至6300)千卡·天⁻¹。回归分析显示,身体活动水平(r = 0.91;P < 0.05)和体重(r = 0.28;P < 0.05;模型A)或去脂体重(FFM;r = 0.32;P < 0.05;模型B)是最能预测能量消耗的因素。将PAF与体重(模型A)和FFM(模型B)相结合的预测方程具有相关性(分别为r = 0.74和r = 0.76),并且与双标记水测量的能量消耗没有差异[平均值±标准误:模型A;4463±65千卡·天,模型B;4462±61千卡·天]。

结论

通过将特种作战部队训练演习量化并分组为活动因子,可以合理准确地预测特种作战部队的能量需求,并且饮食/后勤人员可以使用这些方程来规划适当的喂养方案,以满足特种作战部队在其任务范围内的营养需求。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/caae/5885383/dd1bdbca58bf/12970_2018_219_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验