Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
PLoS One. 2024 Sep 6;19(9):e0310203. doi: 10.1371/journal.pone.0310203. eCollection 2024.
We aimed to develop efficient data labeling strategies for ground truth segmentation in lower-leg magnetic resonance imaging (MRI) of patients with Charcot-Marie-Tooth disease (CMT) and to develop an automated muscle segmentation model using different labeling approaches. The impact of using unlabeled data on model performance was further examined. Using axial T1-weighted MRIs of 120 patients with CMT (60 each with mild and severe intramuscular fat infiltration), we compared the performance of segmentation models obtained using several different labeling strategies. The effect of leveraging unlabeled data on segmentation performance was evaluated by comparing the performances of few-supervised, semi-supervised (mean teacher model), and fully-supervised learning models. We employed a 2D U-Net architecture and assessed its performance by comparing the average Dice coefficients (ADC) using paired t-tests with Bonferroni correction. Among few-supervised models utilizing 10% labeled data, labeling three slices (the uppermost, central, and lowermost slices) per subject exhibited a significantly higher ADC (90.84±3.46%) compared with other strategies using a single image slice per subject (uppermost, 87.79±4.41%; central, 89.42±4.07%; lowermost, 89.29±4.71%, p < 0.0001) or all slices per subject (85.97±9.82%, p < 0.0001). Moreover, semi-supervised learning significantly enhanced the segmentation performance. The semi-supervised model using the three-slices strategy showed the highest segmentation performance (91.03±3.67%) among 10% labeled set models. Fully-supervised model showed an ADC of 91.39±3.76. A three-slice-based labeling strategy for ground truth segmentation is the most efficient method for developing automated muscle segmentation models of CMT lower leg MRI. Additionally, semi-supervised learning with unlabeled data significantly enhances segmentation performance.
我们旨在为 Charcot-Marie-Tooth 病(CMT)患者小腿磁共振成像(MRI)的地面实况分割开发高效的数据标记策略,并使用不同的标记方法开发自动肌肉分割模型。还进一步检查了使用未标记数据对模型性能的影响。使用 120 名 CMT 患者的轴向 T1 加权 MRI(每组 60 名,分别具有轻度和重度肌内脂肪浸润),我们比较了使用几种不同标记策略获得的分割模型的性能。通过比较少数监督,半监督(均值教师模型)和完全监督学习模型的性能,评估了利用未标记数据对分割性能的影响。我们采用了 2D U-Net 架构,并通过使用配对 t 检验和 Bonferroni 校正比较平均骰子系数(ADC)来评估其性能。在使用 10%标记数据的少数监督模型中,与每个受试者使用单个图像切片的其他策略相比,标记每个受试者的三个切片(最上部,中央和最下部切片)表现出明显更高的 ADC(90.84±3.46%)(最上部,87.79±4.41%; 中央,89.42±4.07%; 最下部,89.29±4.71%,p <0.0001)或每个受试者的所有切片(85.97±9.82%,p <0.0001)。此外,半监督学习显着提高了分割性能。在 10%标记集模型中,使用三切片策略的半监督模型显示出最高的分割性能(91.03±3.67%)。完全监督模型的 ADC 为 91.39±3.76。基于三切片的标记策略是开发 CMT 小腿 MRI 自动肌肉分割模型的最有效方法。此外,使用未标记数据的半监督学习显着提高了分割性能。