Bosma Joeran S, Saha Anindo, Hosseinzadeh Matin, Slootweg Ivan, de Rooij Maarten, Huisman Henkjan
From the Diagnostic Image Analysis Group, Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands.
Radiol Artif Intell. 2023 Jul 26;5(5):e230031. doi: 10.1148/ryai.230031. eCollection 2023 Sep.
To evaluate a novel method of semisupervised learning (SSL) guided by automated sparse information from diagnostic reports to leverage additional data for deep learning-based malignancy detection in patients with clinically significant prostate cancer.
This retrospective study included 7756 prostate MRI examinations (6380 patients) performed between January 2014 and December 2020 for model development. An SSL method, report-guided SSL (RG-SSL), was developed for detection of clinically significant prostate cancer using biparametric MRI. RG-SSL, supervised learning (SL), and state-of-the-art SSL methods were trained using 100, 300, 1000, or 3050 manually annotated examinations. Performance on detection of clinically significant prostate cancer by RG-SSL, SL, and SSL was compared on 300 unseen examinations from an external center with a histopathologically confirmed reference standard. Performance was evaluated using receiver operating characteristic (ROC) and free-response ROC analysis. values for performance differences were generated with a permutation test.
At 100 manually annotated examinations, mean examination-based diagnostic area under the ROC curve (AUC) values for RG-SSL, SL, and the best SSL were 0.86 ± 0.01 (SD), 0.78 ± 0.03, and 0.81 ± 0.02, respectively. Lesion-based detection partial AUCs were 0.62 ± 0.02, 0.44 ± 0.04, and 0.48 ± 0.09, respectively. Examination-based performance of SL with 3050 examinations was matched by RG-SSL with 169 manually annotated examinations, thus requiring 14 times fewer annotations. Lesion-based performance was matched with 431 manually annotated examinations, requiring six times fewer annotations.
RG-SSL outperformed SSL in clinically significant prostate cancer detection and achieved performance similar to SL even at very low annotation budgets. Annotation Efficiency, Computer-aided Detection and Diagnosis, MRI, Prostate Cancer, Semisupervised Deep Learning Published under a CC BY 4.0 license.
评估一种新型的半监督学习(SSL)方法,该方法由诊断报告中的自动稀疏信息引导,以利用额外数据进行基于深度学习的具有临床意义的前列腺癌患者恶性肿瘤检测。
这项回顾性研究纳入了2014年1月至2020年12月期间进行的7756例前列腺MRI检查(6380例患者)用于模型开发。开发了一种SSL方法,即报告引导的SSL(RG-SSL),用于使用双参数MRI检测具有临床意义的前列腺癌。使用100、300、1000或3050例手动标注的检查对RG-SSL、监督学习(SL)和最先进的SSL方法进行训练。在来自外部中心的300例未见过的检查中,将RG-SSL、SL和SSL对具有临床意义的前列腺癌的检测性能与组织病理学确认的参考标准进行比较。使用受试者操作特征(ROC)和自由反应ROC分析评估性能。通过置换检验生成性能差异的P值。
在100例手动标注的检查中,RG-SSL、SL和最佳SSL基于检查的ROC曲线下诊断面积(AUC)均值分别为0.86±0.01(标准差)、0.78±0.03和0.81±0.02。基于病变的检测部分AUC分别为0.62±0.02、0.44±0.04和0.48±0.09。RG-SSL使用169例手动标注的检查可达到SL使用3050例检查时的基于检查的性能,因此所需标注数量减少了14倍。基于病变的性能在使用431例手动标注的检查时相匹配,所需标注数量减少了6倍。
在具有临床意义的前列腺癌检测中,RG-SSL优于SSL,即使在非常低的标注预算下也能达到与SL相似的性能。标注效率、计算机辅助检测与诊断、MRI、前列腺癌、半监督深度学习 依据知识共享署名4.0许可协议发布。