Gibson J C, Rubinstein A, Ngai N, Ginsberg H N, Le N A, Gordon R E, Goldberg I J, Brown W V
Biochim Biophys Acta. 1985 Jun 14;835(1):113-23. doi: 10.1016/0005-2760(85)90037-2.
Discrete apolipoprotein E-containing lipoproteins can be identified when EDTA plasma is fractionated on columns of 4% agarose. The present study has demonstrated, by physical and metabolic criteria, that these apolipoprotein E-containing lipoprotein subclasses may be further isolated by immunoaffinity chromatography. Whole plasma was first bound to an anti-apolipoprotein E immunoadsorbent prior to gel filtration on 4% agarose. After elution from the affinity column and dialysis, the bound fraction was chromatographed on 4% agarose. Discrete subfractions of apolipoprotein E could be demonstrated within elution volumes similar to those observed in the original plasma. When whole plasma was first submitted to gel filtration and the apolipoprotein E-containing lipoproteins of either intermediate- or of high-density lipoprotein (HDL) size were subsequently bound to anti-apolipoprotein E columns, the bound eluted fractions maintained their size and physical properties as shown by electron microscopy and by rechromatography on columns of 4% agarose. The metabolic integrity of apolipoprotein E-containing very-low-density lipoproteins (VLDL) was examined by coinjection into a cynomolgus monkey of 125I-labeled apolipoprotein E-rich and 131I-labeled apolipoprotein E-deficient human VLDL which had been separated by immunoaffinity chromatography. The plasma specific activity time curves of the apolipoprotein B in VLDL, intermediate-density (IDL) and low-density (LDL) lipoproteins demonstrated rates of decay and precursor-product relationships similar to those obtained after injection of whole labeled VLDL, supporting the metabolic integrity of VLDL isolated by immunoaffinity chromatography.