Zurak Luka, Wolff Christian, Meier Jessica, Kullock René, Mortensen N Asger, Hecht Bert, Feichtner Thorsten
Nano-Optics and Biophotonics Group, Experimental Physics 5, Institute of Physics, University of Würzburg, Germany.
POLIMA-Center for Polariton-driven Light-Matter Interactions, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark.
Sci Adv. 2024 Sep 6;10(36):eadn5227. doi: 10.1126/sciadv.adn5227.
Scattering of light by plasmonic nanoparticles is classically described using bulk material properties with infinitesimally thin boundaries. However, because of the quantum nature of electrons, real interfaces have finite thickness, leading to nonclassical surface effects that influence light scattering in small particles. Electrical gating offers a promising route to control and study these effects, as static screening charges reside at the boundary. We investigate the modulation of the surface response upon direct electrical charging of single plasmonic nanoresonators. By analyzing measured changes in light scattering within the framework of surface response functions, we find the resonance shift well accounted for by modulation of the classical in-plane surface current. Unexpectedly, we also observed a change in the resonance width, indicating reduced losses for negatively charged resonators. This effect is attributed to a nonclassical out-of-plane surface response, extending beyond pure spill-out effects. Our experiments pave the way for electrically driven plasmonic modulators and metasurfaces, leveraging control over nonclassical surface effects.
传统上,使用具有无限薄边界的体材料特性来描述等离子体纳米颗粒对光的散射。然而,由于电子的量子性质,实际界面具有有限的厚度,从而导致影响小颗粒光散射的非经典表面效应。电门控为控制和研究这些效应提供了一条有前景的途径,因为静态屏蔽电荷位于边界处。我们研究了单个等离子体纳米谐振器直接充电时表面响应的调制。通过在表面响应函数框架内分析测量到的光散射变化,我们发现共振位移可以很好地由经典面内表面电流的调制来解释。出乎意料的是,我们还观察到共振宽度的变化,这表明带负电的谐振器损耗降低。这种效应归因于非经典的面外表面响应,超出了纯溢出效应。我们的实验为利用对非经典表面效应的控制来实现电驱动的等离子体调制器和超表面铺平了道路。