Irshad F, Eberle C, Foerster F M, Grafenstein K V, Haberstroh F, Travac E, Weisse N, Karsch S, Döpp A
Fakultät für Physik, <a href="https://ror.org/05591te55">Ludwig-Maximilian-Universität München</a>, Am Coulombwall 1, 85748 Garching, Germany.
<a href="https://ror.org/01vekys64">Max Planck Institut für Quantenoptik</a>, Hans-Kopfermann-Strasse 1, Garching 85748, Germany.
Phys Rev Lett. 2024 Aug 23;133(8):085001. doi: 10.1103/PhysRevLett.133.085001.
Optimization of accelerator performance parameters is limited by numerous trade-offs, and finding the appropriate balance between optimization goals for an unknown system is challenging to achieve. Here, we show that multiobjective Bayesian optimization can map the solution space of a laser wakefield accelerator (LWFA) in a very sample-efficient way. We observe that there exists a wide range of Pareto-optimal solutions that trade beam energy versus charge at similar laser-to-beam efficiency. Moreover, many applications such as light sources require particle beams at certain target energies. We demonstrate accurate energy tuning of the LWFA from 150 to 400 MeV via the simultaneous adjustment of eight parameters. To further advance this use case, we propose an inverse model that allows a user to specify desired beam parameters. Trained on the forward Gaussian process model, the inverse model generates input parameter value ranges within which the desired setting is likely to be reached. The method reveals different strategies for accelerator tuning and is expected to drastically facilitate the operation of LWFAs in the near future.
加速器性能参数的优化受到众多权衡因素的限制,对于未知系统而言,在优化目标之间找到合适的平衡极具挑战性。在此,我们表明多目标贝叶斯优化能够以非常高效的采样方式映射激光尾场加速器(LWFA)的解空间。我们观察到,在相似的激光到束流效率下,存在广泛的帕累托最优解,这些解在束流能量与电荷量之间进行权衡。此外,许多应用(如光源)需要特定目标能量的粒子束。我们通过同时调整八个参数,展示了将LWFA的能量从150 MeV精确调谐到400 MeV。为了进一步推进此应用案例,我们提出了一个逆模型,该模型允许用户指定所需的束流参数。基于正向高斯过程模型进行训练,逆模型生成输入参数值范围,在该范围内可能达到所需设置。该方法揭示了加速器调谐的不同策略,预计在不久的将来将极大地促进LWFA的运行。