Ji Fuhao, Edelen Auralee, Roussel Ryan, Shen Xiaozhe, Miskovich Sara, Weathersby Stephen, Luo Duan, Mo Mianzhen, Kramer Patrick, Mayes Christopher, Othman Mohamed A K, Nanni Emilio, Wang Xijie, Reid Alexander, Minitti Michael, England Robert Joel
SLAC National Accelerator Laboratory, Menlo Park, 94025, California, USA.
Nat Commun. 2024 Jun 3;15(1):4726. doi: 10.1038/s41467-024-48923-9.
Ultrafast electron diffraction using MeV energy beams(MeV-UED) has enabled unprecedented scientific opportunities in the study of ultrafast structural dynamics in a variety of gas, liquid and solid state systems. Broad scientific applications usually pose different requirements for electron probe properties. Due to the complex, nonlinear and correlated nature of accelerator systems, electron beam property optimization is a time-taking process and often relies on extensive hand-tuning by experienced human operators. Algorithm based efficient online tuning strategies are highly desired. Here, we demonstrate multi-objective Bayesian active learning for speeding up online beam tuning at the SLAC MeV-UED facility. The multi-objective Bayesian optimization algorithm was used for efficiently searching the parameter space and mapping out the Pareto Fronts which give the trade-offs between key beam properties. Such scheme enables an unprecedented overview of the global behavior of the experimental system and takes a significantly smaller number of measurements compared with traditional methods such as a grid scan. This methodology can be applied in other experimental scenarios that require simultaneously optimizing multiple objectives by explorations in high dimensional, nonlinear and correlated systems.
使用兆电子伏特能量束的超快电子衍射(MeV-UED)在研究各种气态、液态和固态系统中的超快结构动力学方面带来了前所未有的科学机遇。广泛的科学应用通常对电子探针特性提出不同要求。由于加速器系统具有复杂、非线性和相关性的特点,电子束特性优化是一个耗时的过程,并且通常依赖经验丰富的操作人员进行大量手动调节。因此,非常需要基于算法的高效在线调谐策略。在此,我们展示了用于加速SLAC兆电子伏特超快电子衍射装置在线束调谐的多目标贝叶斯主动学习方法。多目标贝叶斯优化算法用于有效搜索参数空间并绘制帕累托前沿,该前沿给出了关键束特性之间的权衡。这种方案能够以前所未有的方式全面了解实验系统的全局行为,并且与传统方法(如网格扫描)相比,所需的测量次数显著减少。这种方法可应用于其他需要在高维、非线性和相关系统中通过探索同时优化多个目标的实验场景。