用于电磁干扰屏蔽和散热的柔性固液双连续导电导热纳米复合材料。

Flexible solid-liquid bi-continuous electrically and thermally conductive nanocomposite for electromagnetic interference shielding and heat dissipation.

作者信息

Sun Yue, Su Yunting, Chai Ziyuan, Jiang Lei, Heng Liping

机构信息

Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, PR China.

出版信息

Nat Commun. 2024 Sep 6;15(1):7290. doi: 10.1038/s41467-024-51732-9.

Abstract

In the era of 5 G, the rise in power density in miniaturized, flexible electronic devices has created an urgent need for thin, flexible, polymer-based electrically and thermally conductive nanocomposites to address challenges related to electromagnetic interference (EMI) and heat accumulation. However, the difficulties in establishing enduring and continuous transfer pathways for electrons and phonons using solid-rigid conductive fillers within insulative polymer matrices limit the development of such nanocomposites. Herein, we incorporate MXene-bridging-liquid metal (MBLM) solid-liquid bi-continuous electrical-thermal conductive networks within aramid nanofiber/polyvinyl alcohol (AP) matrices, resulting in the AP/MBLM nanocomposite with ultra-high electrical conductivity (3984 S/cm) and distinguished thermal conductivity of 13.17 W m K. This nanocomposite exhibits excellent EMI shielding efficiency (SE) of 74.6 dB at a minimal thickness of 22 μm, and maintains high EMI shielding stability after enduring various harsh conditions. Meanwhile, the AP/MBLM nanocomposite also demonstrates promising heat dissipation behavior. This work expands the concept of creating thin films with high electrical and thermal conductivity.

摘要

在5G时代,小型化、柔性电子设备中功率密度的增加迫切需要薄的、柔性的、基于聚合物的导电导热纳米复合材料,以应对与电磁干扰(EMI)和热量积累相关的挑战。然而,在绝缘聚合物基体中使用固体刚性导电填料建立持久且连续的电子和声子传输路径存在困难,限制了此类纳米复合材料的发展。在此,我们将MXene桥接液态金属(MBLM)固液双连续导电导热网络引入芳纶纳米纤维/聚乙烯醇(AP)基体中,得到了具有超高电导率(3984 S/cm)和显著热导率13.17 W m K的AP/MBLM纳米复合材料。这种纳米复合材料在最小厚度为22μm时表现出74.6 dB的优异电磁干扰屏蔽效率(SE),并且在经受各种恶劣条件后仍保持高电磁干扰屏蔽稳定性。同时,AP/MBLM纳米复合材料还表现出良好的散热性能。这项工作扩展了制备高导电和导热薄膜的概念。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b748/11379691/ab28fe54bc28/41467_2024_51732_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索