Cao Qian, Zhang Nianjia, Chong Andy, Zhan Qiwen
School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, 200093, Shanghai, China.
Zhangjiang Laboratory, Shanghai, China.
Nat Commun. 2024 Sep 7;15(1):7821. doi: 10.1038/s41467-024-52268-8.
Spatiotemporal structured light has opened up new avenues for optics and photonics. Current spatiotemporal manipulation of light mostly relies on phase-only devices such as liquid crystal spatial light modulators to generate spatiotemporal optical fields with unique photonic properties. However, simultaneous manipulation of both amplitude and phase of the complex field for the spatiotemporal light is still lacking, limiting the diversity and richness of achievable photonic properties. In this work, a simple and versatile spatiotemporal holographic method that can arbitrarily sculpt the spatiotemporal light is presented. The capabilities of this simple yet powerful method are demonstrated through the generation of fundamental and higher-order spatiotemporal Bessel wavepackets, spatiotemporal crystal-like and quasi-crystal-like structures, and spatiotemporal flat-top wavepackets. Fully customizable spatiotemporal wavepackets will find broader application in investigating the dynamics of spatiotemporal fields and interactions between ultrafast spatiotemporal pulses and matters, unveiling previously hidden light-matter interactions and unlocking breakthroughs in photonics and beyond.
时空结构光为光学和光子学开辟了新途径。当前对光的时空操纵大多依赖于仅相位器件,如液晶空间光调制器,以产生具有独特光子特性的时空光场。然而,对于时空光的复场的幅度和相位的同时操纵仍然缺乏,这限制了可实现的光子特性的多样性和丰富性。在这项工作中,提出了一种简单通用的时空全息方法,该方法可以任意塑造时空光。通过生成基本和高阶时空贝塞尔波包、时空晶体状和准晶体状结构以及时空平顶波包,展示了这种简单而强大的方法的能力。完全可定制的时空波包将在研究时空场的动力学以及超快时空脉冲与物质之间的相互作用、揭示以前隐藏的光与物质相互作用以及在光子学及其他领域取得突破方面找到更广泛的应用。