Chen Lu, Zhu Wenqi, Huo Pengcheng, Song Junyeob, Lezec Henri J, Xu Ting, Agrawal Amit
National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
University of Maryland, College Park, MD 20742, USA.
Sci Adv. 2022 Oct 28;8(43):eabq8314. doi: 10.1126/sciadv.abq8314. Epub 2022 Oct 26.
The ability to control the instantaneous state of light, from high-energy pulses down to the single-photon level, is an indispensable requirement in photonics. This has, for example, facilitated spatiotemporal probing and coherent control of ultrafast light-matter interactions, and enabled capabilities such as generation of exotic states of light with complexity, or at wavelengths, that are not easily accessible. Here, by leveraging the multifunctional control of light at the nanoscale offered by metasurfaces embedded in a Fourier transform setup, we present a versatile approach to synthesize ultrafast optical transients with arbitrary control over its complete spatiotemporal evolution. Our approach, supporting an ultrawide bandwidth with simultaneously high spectral and spatial resolution, enables ready synthesis of complex states of structured space-time wave packets. We expect our results to offer unique capabilities in coherent ultrafast light-matter interactions and facilitate applications in microscopy, communications, and nonlinear optics.
在光子学中,能够控制光的瞬时状态,从高能脉冲到单光子水平,是一项不可或缺的要求。例如,这有助于对超快光与物质相互作用进行时空探测和相干控制,并实现了诸如产生具有复杂性或处于不易获得的波长的奇异光态等能力。在此,通过利用嵌入傅里叶变换装置中的超表面在纳米尺度上对光的多功能控制,我们提出了一种通用方法,可对超快光学瞬态的完整时空演化进行任意控制来合成它。我们的方法支持超宽带宽,同时具有高光谱和空间分辨率,能够轻松合成复杂的结构化时空波包状态。我们期望我们的结果能在相干超快光与物质相互作用中提供独特的能力,并促进在显微镜、通信和非线性光学中的应用。