Suppr超能文献

一种使用超宽带微波和深度学习进行出血检测与定位的实验系统。

An experimental system for detection and localization of hemorrhage using ultra-wideband microwaves with deep learning.

作者信息

Hedayati Eisa, Safari Fatemeh, Verghese George, Ciancia Vito R, Sodickson Daniel K, Dehkharghani Seena, Alon Leeor

机构信息

Center for Advanced Imaging Innovation and Research (CAI2R), New Yorsity School of Medicine, New York, NY, USA.

Center for Biomedical Imaging, New York University School of Medicine, New York, NY, USA.

出版信息

Commun Eng. 2024 Sep 5;3(1):126. doi: 10.1038/s44172-024-00259-4.

Abstract

Stroke is a leading cause of mortality and disability. Emergent diagnosis and intervention are critical, and predicated upon initial brain imaging; however, existing clinical imaging modalities are generally costly, immobile, and demand highly specialized operation and interpretation. Low-energy microwaves have been explored as a low-cost, small form factor, fast, and safe probe for tissue dielectric properties measurements, with both imaging and diagnostic potential. Nevertheless, challenges inherent to microwave reconstruction have impeded progress, hence conduction of microwave imaging remains an elusive scientific aim. Herein, we introduce a dedicated experimental framework comprising a robotic navigation system to translate blood-mimicking phantoms within a human head model. An 8-element ultra-wideband array of modified antipodal Vivaldi antennas was developed and driven by a two-port vector network analyzer spanning 0.6-9.0 GHz at an operating power of 1 mW. Complex scattering parameters were measured, and dielectric signatures of hemorrhage were learned using a dedicated deep neural network for prediction of hemorrhage classes and localization. An overall sensitivity and specificity for detection >0.99 was observed, with Rayleigh mean localization error of 1.65 mm. The study establishes the feasibility of a robust experimental model and deep learning solution for ultra-wideband microwave stroke detection.

摘要

中风是导致死亡和残疾的主要原因。紧急诊断和干预至关重要,且基于初始脑部成像;然而,现有的临床成像方式通常成本高昂、设备固定,且需要高度专业化的操作和解读。低能量微波已被探索作为一种低成本、小尺寸、快速且安全的用于测量组织介电特性的探头,具有成像和诊断潜力。尽管如此,微波重建固有的挑战阻碍了进展,因此微波成像的实现仍然是一个难以捉摸的科学目标。在此,我们介绍一个专门的实验框架,该框架包括一个机器人导航系统,用于在人体头部模型内移动仿血体模。开发了一个由8个单元组成的改进型对映体维瓦尔第天线的超宽带阵列,并由一个两端口矢量网络分析仪驱动,该分析仪在1毫瓦的工作功率下覆盖0.6 - 9.0吉赫兹。测量了复散射参数,并使用一个专门的深度神经网络学习出血的介电特征,以预测出血类别和定位。观察到检测的总体灵敏度和特异性>0.99,瑞利平均定位误差为1.65毫米。该研究确立了用于超宽带微波中风检测的稳健实验模型和深度学习解决方案的可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8b9/11379885/ebf88d9da347/44172_2024_259_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验