集成深度学习的保形可穿戴天线系统用于无创乳腺癌检测
Conformal On-Body Antenna System Integrated with Deep Learning for Non-Invasive Breast Cancer Detection.
作者信息
Sharaf Marwa H, Arrebola Manuel, Hussein Khalid F A, Farahat Asmaa E, Vaquero Álvaro F
机构信息
Electronics and Communications Department, College of Engineering and Technology, Arab Academy for Science, Technology & Maritime Transport, Alexandria 21937, Egypt.
Universidad de Oviedo, 33007 Gijón, Spain.
出版信息
Sensors (Basel). 2025 Jul 28;25(15):4670. doi: 10.3390/s25154670.
Breast cancer detection through non-invasive and accurate techniques remains a critical challenge in medical diagnostics. This study introduces a deep learning-based framework that leverages a microwave radar system equipped with an arc-shaped array of six antennas to estimate key tumor parameters, including position, size, and depth. This research begins with the evolutionary design of an ultra-wideband octagram ring patch antenna optimized for enhanced tumor detection sensitivity in directional near-field coupling scenarios. The antenna is fabricated and experimentally evaluated, with its performance validated through S-parameter measurements, far-field radiation characterization, and efficiency analysis to ensure effective signal propagation and interaction with breast tissue. Specific Absorption Rate (SAR) distributions within breast tissues are comprehensively assessed, and power adjustment strategies are implemented to comply with electromagnetic exposure safety limits. The dataset for the deep learning model comprises simulated self and mutual S-parameters capturing tumor-induced variations over a broad frequency spectrum. A core innovation of this work is the development of the Attention-Based Feature Separation (ABFS) model, which dynamically identifies optimal frequency sub-bands and disentangles discriminative features tailored to each tumor parameter. A multi-branch neural network processes these features to achieve precise tumor localization and size estimation. Compared to conventional attention mechanisms, the proposed ABFS architecture demonstrates superior prediction accuracy and interpretability. The proposed approach achieves high estimation accuracy and computational efficiency in simulation studies, underscoring the promise of integrating deep learning with conformal microwave imaging for safe, effective, and non-invasive breast cancer detection.
通过非侵入性且精确的技术进行乳腺癌检测仍然是医学诊断中的一项关键挑战。本研究引入了一个基于深度学习的框架,该框架利用配备有六个天线的弧形阵列的微波雷达系统来估计关键肿瘤参数,包括位置、大小和深度。本研究首先对超宽带八角形环形贴片天线进行了优化设计,以提高在定向近场耦合场景下的肿瘤检测灵敏度。该天线被制作出来并进行了实验评估,其性能通过S参数测量、远场辐射特性表征和效率分析得到验证,以确保信号能有效传播并与乳腺组织相互作用。对乳腺组织内的比吸收率(SAR)分布进行了全面评估,并实施了功率调整策略以符合电磁辐射安全限值。深度学习模型的数据集包括模拟的自S参数和互S参数,这些参数捕捉了在广泛频谱上肿瘤引起的变化。这项工作的一项核心创新是基于注意力的特征分离(ABFS)模型的开发,该模型能动态识别最优频率子带,并解开针对每个肿瘤参数定制的判别特征。一个多分支神经网络对这些特征进行处理,以实现精确的肿瘤定位和大小估计。与传统注意力机制相比,所提出的ABFS架构展示出了更高的预测准确性和可解释性。所提出的方法在模拟研究中实现了较高的估计准确性和计算效率,突出了将深度学习与共形微波成像相结合用于安全、有效和非侵入性乳腺癌检测的前景。