Suppr超能文献

显著性模型在预测女性和年轻人的注视点方面表现最佳。

Saliency models perform best for women's and young adults' fixations.

作者信息

Strauch Christoph, Hoogerbrugge Alex J, Baer Gregor, Hooge Ignace T C, Nijboer Tanja C W, Stuit Sjoerd M, Van der Stigchel Stefan

机构信息

Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands.

出版信息

Commun Psychol. 2023 Nov 17;1(1):34. doi: 10.1038/s44271-023-00035-8.

Abstract

Saliency models seek to predict fixation locations in (human) gaze behaviour. These are typically created to generalize across a wide range of visual scenes but validated using only a few participants. Generalizations across individuals are generally implied. We tested this implied generalization across people, not images, with gaze data of 1600 participants. Using a single, feature-rich image, we found shortcomings in the prediction of fixations across this diverse sample. Models performed optimally for women and participants aged 18-29. Furthermore, model predictions differed in performance from earlier to later fixations. Our findings show that gaze behavior towards low-level visual input varies across participants and reflects dynamic underlying processes. We conclude that modeling and understanding gaze behavior will require an approach which incorporates differences in gaze behavior across participants and fixations; validates generalizability; and has a critical eye to potential biases in training- and testing data.

摘要

显著性模型旨在预测(人类)注视行为中的注视位置。这些模型通常是为了在广泛的视觉场景中进行泛化而创建的,但仅使用少数参与者进行验证。通常隐含着个体之间的泛化。我们使用1600名参与者的注视数据,对这种隐含的个体间泛化进行了测试,而不是针对图像。通过使用单一的、特征丰富的图像,我们发现在这个多样化样本中对注视的预测存在缺陷。模型在女性以及18至29岁的参与者中表现最佳。此外,模型预测在早期注视和后期注视中的表现有所不同。我们的研究结果表明,不同参与者对低层次视觉输入的注视行为存在差异,并且反映了动态的潜在过程。我们得出结论,对注视行为进行建模和理解需要一种方法,该方法要考虑到不同参与者之间以及不同注视之间的注视行为差异;验证泛化能力;并对训练和测试数据中的潜在偏差持批判性眼光。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a5e/11332104/4661168c3127/44271_2023_35_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验