Suppr超能文献

评估闪烁成像和切伦科夫成像作为射波刀放疗中射束形状验证方法的效果。

Assessment of scintillation and Cherenkov imaging as beam shape verification method in CyberKnife® radiotherapy.

作者信息

Cui Fengwei, Jin Tao, Li Mingzhu, Zhu Lei, Di Xing, Zhu Huaguang

机构信息

CyberKnife Center, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China.

Neurosurgical Institute of Fudan University, Shanghai, China.

出版信息

J Appl Clin Med Phys. 2024 Dec;25(12):e14508. doi: 10.1002/acm2.14508. Epub 2024 Sep 6.

Abstract

PURPOSE

The goal of this study is to assess the utility of Cherenkov imaging (CI) and scintillation imaging (SI) as high-resolution techniques to measure CyberKnife® beam shape quantitatively at the irradiation surface in quality assurance (QA).

METHODS

The EMCCD camera captured scintillation and Cherenkov photons arising from 6 MV x-ray dose deposition produced by the CyberKnife® VSI System. Two imaging methods were done at source to surface distance of 800 cm with the same field size, ranging from 10 to 60 mm using fixed cones and iris collimators. The output sensitivity and constancy were measured using the SI and CI, and benchmarked against an ionization chamber. Line profiles of each beam measured by optical imaging were compared with film measurement. Position shifts were introduced to test the sensitivity of SI and CI to small beam position deviations. To assess reproducibility, the beam measurements were tested three times on 5 consecutive days.

RESULTS

Both systems exhibited comparable sensitivity to the ionization chamber in response to fluctuations in CyberKnife® output. The beam profiles in SI matched well with the measured film image, with accuracy in the range of ± 0.20 and ± 0.26 mm standard deviation for the circle and iris field, respectively. The corresponding accuracy measured by CI is in the range of ± 0.25 and ± 0.33 mm, respectively. These are all within the tolerance recommended by the guidelines of CyberKnife® QA. The accuracy measured by SI and CI for 1 mm beam position shift within 0.21 and 0.45 mm tolerance, respectively. Repeatability measurements of the beam have shown a standard deviation within 0.94 mm.

CONCLUSIONS

SI and CI techniques are tested to provide a valid way to measure CyberKnife® beam shape in this study. Meanwhile, the systematic comparison of SI and CI also provides evidence for the measurement methods selection appropriately.

摘要

目的

本研究的目的是评估切伦科夫成像(CI)和闪烁成像(SI)作为高分辨率技术在质量保证(QA)中定量测量射波刀®在照射表面的射束形状的效用。

方法

EMCCD相机捕捉由射波刀®VSI系统产生的6MV X射线剂量沉积所产生的闪烁光子和切伦科夫光子。在源皮距为800cm、相同射野尺寸(使用固定准直器和虹膜准直器,范围为10至60mm)的条件下进行两种成像方法。使用SI和CI测量输出灵敏度和稳定性,并与电离室进行基准比较。将通过光学成像测量的每条射束的线轮廓与胶片测量结果进行比较。引入位置偏移以测试SI和CI对小射束位置偏差的灵敏度。为评估可重复性,在连续5天内对射束测量进行3次测试。

结果

在响应射波刀®输出的波动方面,两个系统对电离室均表现出可比的灵敏度。SI中的射束轮廓与测量的胶片图像匹配良好,对于圆形和虹膜射野,标准差精度分别在±0.20和±0.26mm范围内。CI测量的相应精度分别在±0.25和±0.33mm范围内。这些均在射波刀®QA指南推荐的公差范围内。SI和CI测量的1mm射束位置偏移精度分别在0.21和0.45mm公差范围内。射束的重复性测量显示标准差在0.94mm以内。

结论

在本研究中,对SI和CI技术进行了测试,以提供一种测量射波刀®射束形状的有效方法。同时,SI和CI的系统比较也为适当选择测量方法提供了依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bf3/11633798/fe276fe652a4/ACM2-25-e14508-g005.jpg

相似文献

1
Assessment of scintillation and Cherenkov imaging as beam shape verification method in CyberKnife® radiotherapy.
J Appl Clin Med Phys. 2024 Dec;25(12):e14508. doi: 10.1002/acm2.14508. Epub 2024 Sep 6.
2
Scintillation imaging as a high-resolution, remote, versatile 2D detection system for MR-linac quality assurance.
Med Phys. 2020 Sep;47(9):3861-3869. doi: 10.1002/mp.14353. Epub 2020 Jul 18.
3
Quality assurance of Cyberknife robotic stereotactic radiosurgery using an angularly independent silicon detector.
J Appl Clin Med Phys. 2019 Jan;20(1):76-88. doi: 10.1002/acm2.12496. Epub 2018 Nov 22.
4
Cherenkov imaging for linac beam shape analysis as a remote electronic quality assessment verification tool.
Med Phys. 2019 Feb;46(2):811-821. doi: 10.1002/mp.13303. Epub 2018 Dec 14.
5
A novel method for monitoring the constancy of beam path accuracy in CyberKnife.
J Appl Clin Med Phys. 2019 May;20(5):109-119. doi: 10.1002/acm2.12585. Epub 2019 Apr 19.
7
Radioluminescence imaging feasibility for robotic radiosurgery field size quality assurance.
Med Phys. 2022 Oct;49(10):6588-6598. doi: 10.1002/mp.15914. Epub 2022 Aug 24.
8
Remote Cherenkov imaging-based quality assurance of a magnetic resonance image-guided radiotherapy system.
Med Phys. 2018 Jun;45(6):2647-2659. doi: 10.1002/mp.12919. Epub 2018 May 3.

本文引用的文献

2
Report of AAPM Task Group 155: Megavoltage photon beam dosimetry in small fields and non-equilibrium conditions.
Med Phys. 2021 Oct;48(10):e886-e921. doi: 10.1002/mp.15030. Epub 2021 Jul 21.
3
Visual Isocenter Position Enhanced Review (VIPER): a Cherenkov imaging-based solution for MR-linac daily QA.
Med Phys. 2021 Jun;48(6):2750-2759. doi: 10.1002/mp.14892. Epub 2021 May 9.
4
Scintillation imaging as a high-resolution, remote, versatile 2D detection system for MR-linac quality assurance.
Med Phys. 2020 Sep;47(9):3861-3869. doi: 10.1002/mp.14353. Epub 2020 Jul 18.
5
Characterization of a new scintillation imaging system for proton pencil beam dose rate measurements.
Phys Med Biol. 2020 Aug 21;65(16):165014. doi: 10.1088/1361-6560/ab9452.
6
Imaging radiation dose in breast radiotherapy by X-ray CT calibration of Cherenkov light.
Nat Commun. 2020 May 8;11(1):2298. doi: 10.1038/s41467-020-16031-z.
8
Optical imaging method to quantify spatial dose variation due to the electron return effect in an MR-linac.
Med Phys. 2020 Mar;47(3):1258-1267. doi: 10.1002/mp.13954. Epub 2019 Dec 25.
10
Cherenkov imaging for linac beam shape analysis as a remote electronic quality assessment verification tool.
Med Phys. 2019 Feb;46(2):811-821. doi: 10.1002/mp.13303. Epub 2018 Dec 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验