Sena Tömekce Birce, Cuxart Marc G, Caputo Laura, Poletto Daniele, Charlier Jean-Christophe, Bonifazi Davide, Auwärter Willi
Physics Department E20, TUM School of Natural Sciences, Technical University of Munich, Garching, Germany.
Institute of Condensed Matter and Nanosciences, Université catholique de Louvain (UCLouvain), 1348, Louvain-la-Neuve, Belgium.
Chemistry. 2024 Dec 10;30(69):e202402492. doi: 10.1002/chem.202402492. Epub 2024 Nov 3.
The on-surface synthesis strategy has emerged as a promising route for fabricating well-defined two-dimensional (2D) BN-substituted carbon nanomaterials with tunable electronic properties. This approach relies on specially designed precursors and requires a thorough understanding of the on-surface reaction pathways. It promises precise structural control at the atomic scale, thus complementing chemical vapor deposition (CVD). In this study, we investigated a novel heteroatomic precursor, tetrabromoborazine, which incorporates a BN core and an OH group, on Ag(111) using low temperature scanning tunnelling microscopy/spectroscopy (LT-STM/STS) and X-ray photoelectron spectroscopy (XPS). Through sequential temperature-induced reactions involving dehalogenation and dehydrogenation, distinct tetrabromoborazine derivatives were produced as reaction intermediates, leading to the formation of specific self-assemblies. Notably, the resulting intricate supramolecular structures include a chiral kagomé lattice composed of molecular dimers exhibiting a unique electronic signature. The final product obtained was a random covalent carbon network with BN-substitution and embedded oxygen heteroatoms. Our study offers valuable insights into the significance of the structure and functionalization of BN precursors in temperature-induced on-surface reactions, which can help future rational precursor design. Additionally, it introduces complex surface architectures that offer a high areal density of borazine cores.
表面合成策略已成为制备具有可调电子性质的明确定义的二维(2D)硼氮取代碳纳米材料的一条有前景的途径。这种方法依赖于特殊设计的前驱体,并且需要对表面反应路径有透彻的理解。它有望在原子尺度上实现精确的结构控制,从而补充化学气相沉积(CVD)。在本研究中,我们使用低温扫描隧道显微镜/光谱(LT-STM/STS)和X射线光电子能谱(XPS),在Ag(111)上研究了一种新型杂原子前驱体四溴硼嗪,它包含一个硼氮核心和一个羟基。通过涉及脱卤和脱氢的顺序温度诱导反应,生成了不同的四溴硼嗪衍生物作为反应中间体,导致形成特定的自组装结构。值得注意的是,最终形成的复杂超分子结构包括由具有独特电子特征的分子二聚体组成的手性 Kagomé 晶格。得到的最终产物是具有硼氮取代和嵌入氧杂原子的无规共价碳网络。我们的研究为硼氮前驱体在温度诱导的表面反应中的结构和功能化的重要性提供了有价值的见解,这有助于未来合理的前驱体设计。此外,它引入了具有高面密度硼嗪核心的复杂表面结构。