Oxford Biomedica (UK) Limited, Oxford, UK.
Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, London, UK.
Biotechnol Bioeng. 2024 Dec;121(12):3728-3741. doi: 10.1002/bit.28834. Epub 2024 Sep 8.
Lentiviral vectors are highly efficient gene delivery vehicles used extensively in the rapidly growing field of cell and gene therapy. Demand for efficient, large-scale, lentiviral vector bioprocessing is growing as more therapies reach late-stage clinical trials and are commercialized. However, despite substantial progress, several process inefficiencies remain. The unintended auto-transduction of viral vector-producing cells by newly synthesized lentiviral vector particles during manufacturing processes constitutes one such inefficiency which remains largely unaddressed. In this study, we determined that over 60% of functional lentiviral vector particles produced during an upstream production process were lost to auto-transduction, highlighting a major process inefficiency likely widespread within the industry. Auto-transduction of cells by particles pseudotyped with the widely used vesicular stomatitis virus G protein was inhibited via the adoption of a reduced extracellular pH during vector production, impairing the ability of the vector to interact with its target receptor. Employing a posttransfection pH shift to pH 6.7-6.8 resulted in a sevenfold reduction in vector genome integration events, arising from lentiviral vector-mediated transduction, within viral vector-producing cell populations and ultimately resulted in improved lentiviral vector production kinetics. The proposed strategy is scalable and cost-effective, providing an industrially relevant approach to improve lentiviral vector production efficiencies.
慢病毒载体是一种高效的基因传递载体,在细胞和基因治疗这一快速发展的领域得到了广泛应用。随着越来越多的疗法进入后期临床试验和商业化,对高效、大规模的慢病毒载体生物加工的需求也在不断增长。然而,尽管取得了实质性的进展,但仍存在一些工艺效率低下的问题。在生产过程中,新合成的慢病毒载体颗粒对病毒载体生产细胞的意外自动转导就是其中一个效率低下的问题,而且这个问题在很大程度上尚未得到解决。在这项研究中,我们发现,在上游生产过程中产生的功能性慢病毒载体颗粒中,有超过 60%由于自动转导而丢失,这突出表明这是一个主要的工艺效率低下的问题,可能在整个行业中广泛存在。通过在载体生产过程中采用降低的细胞外 pH 值,可以抑制广泛使用的水疱性口炎病毒 G 蛋白假型的颗粒对细胞的自动转导,从而削弱载体与靶受体相互作用的能力。采用转染后 pH 值向 6.7-6.8 的偏移,可使病毒载体生产细胞群中慢病毒载体介导的转导引起的载体基因组整合事件减少七倍,最终可改善慢病毒载体的生产动力学。所提出的策略具有可扩展性和成本效益,为提高慢病毒载体生产效率提供了一种具有工业相关性的方法。