砷诱导的小鼠焦虑和抑郁样行为的病理生理学中肠道微生物菌群紊乱的流行情况。
Prevalence of perturbed gut microbiota in pathophysiology of arsenic-induced anxiety- and depression-like behaviour in mice.
机构信息
Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India.
Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India; Centre for Research in Nanoscience and Nanotechnology, Technology Campus, University of Calcutta, JD-2, Sector-III, Salt Lake, Kolkata, India.
出版信息
Chemosphere. 2024 Sep;364:143293. doi: 10.1016/j.chemosphere.2024.143293. Epub 2024 Sep 6.
Severe toxic effects of arsenic on human physiology have been of immense concern worldwide. Arsenic causes irrevocable structural and functional disruption of tissues, leading to major diseases in chronically exposed individuals. However, it is yet to be resolved whether the effects result from direct deposition and persistence of arsenic in tissues, or via activation of indirect signaling components. Emerging evidences suggest that gut inhabitants play an active role in orchestrating various aspects of brain physiology, as the gut-brain axis maintains cognitive health, emotions, learning and memory skills. Arsenic-induced dysbiosis may consequentially evoke neurotoxicity, eventually leading to anxiety and depression. To delineate the mechanism of action, mice were exposed to different concentrations of arsenic. Enrichment of Gram-negative bacteria and compromised barrier integrity of the gut enhanced lipopolysaccharide (LPS) level in the bloodstream, which in turn elicited systemic inflammation. Subsequent alterations in neurotransmitter levels, microglial activation and histoarchitectural disruption in brain triggered onset of anxiety- and depression-like behaviour in a dose-dependent manner. Finally, to confirm whether the neurotoxic effects are specifically a consequence of modulation of gut microbiota (GM) by arsenic and not arsenic accumulation in the brain, fecal microbiota transplantations (FMT) were performed from arsenic-exposed mice to healthy recipients. 16S rRNA gene sequencing indicated major alterations in GM population in FMT mice, leading to severe structural, functional and behavioural alterations. Moreover, suppression of Toll-like receptor 4 (TLR4) using vivo-morpholino oligomers (VMO) indicated restoration of the altered parameters towards normalcy in FMT mice, confirming direct involvement of the GM in inducing neurotoxicity through the arsenic-gut-brain axis. This study accentuates the potential role of the gut microbiota in promoting neurotoxicity in arsenic-exposed mice, and has immense relevance in predicting neurotoxicity under altered conditions of the gut for designing therapeutic interventions that will target gut dysbiosis to attenuate arsenic-mediated neurotoxicity.
砷对人体生理的严重毒性影响一直是全世界关注的焦点。砷会导致组织不可逆转的结构和功能破坏,从而导致长期暴露的个体患上重大疾病。然而,目前还不清楚这些影响是源于砷在组织中的直接沉积和持续存在,还是源于间接信号成分的激活。新出现的证据表明,肠道居民在协调大脑生理学的各个方面发挥着积极作用,因为肠道-大脑轴维持着认知健康、情绪、学习和记忆能力。砷诱导的肠道菌群失调可能会引发神经毒性,最终导致焦虑和抑郁。为了阐明作用机制,研究人员用不同浓度的砷对小鼠进行了暴露。革兰氏阴性菌的富集和肠道屏障完整性受损,增加了血液中脂多糖(LPS)的水平,进而引发全身炎症。随后,神经递质水平的改变、小胶质细胞的激活以及大脑的组织学破坏,以剂量依赖的方式引发了焦虑和抑郁样行为的发生。最后,为了证实神经毒性效应是否是砷对肠道微生物群(GM)的调节,而不是砷在大脑中的积累所特有的结果,从暴露于砷的小鼠中进行粪便微生物群移植(FMT),将其移植到健康的接受者中。16S rRNA 基因测序表明,FMT 小鼠的 GM 群体发生了重大变化,导致严重的结构、功能和行为改变。此外,使用体内形态发生素寡核苷酸(VMO)抑制 Toll 样受体 4(TLR4)表明,FMT 小鼠中改变的参数向正常方向恢复,这证实了 GM 通过砷-肠道-大脑轴直接参与诱导神经毒性。这项研究强调了肠道微生物群在促进砷暴露小鼠神经毒性方面的潜在作用,并且对于预测肠道条件改变下的神经毒性具有重要意义,因为这为设计针对肠道菌群失调的治疗干预措施提供了依据,以减轻砷介导的神经毒性。