State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China.
Microbiome. 2021 Nov 17;9(1):226. doi: 10.1186/s40168-021-01107-9.
BACKGROUND: Parkinson's disease (PD) is a prevalent neurodegenerative disorder, displaying not only well-known motor deficits but also gastrointestinal dysfunctions. Consistently, it has been increasingly evident that gut microbiota affects the communication between the gut and the brain in PD pathogenesis, known as the microbiota-gut-brain axis. As an approach to re-establishing a normal microbiota community, fecal microbiota transplantation (FMT) has exerted beneficial effects on PD in recent studies. Here, in this study, we established a chronic rotenone-induced PD mouse model to evaluate the protective effects of FMT treatment on PD and to explore the underlying mechanisms, which also proves the involvement of gut microbiota dysbiosis in PD pathogenesis via the microbiota-gut-brain axis. RESULTS: We demonstrated that gut microbiota dysbiosis induced by rotenone administration caused gastrointestinal function impairment and poor behavioral performances in the PD mice. Moreover, 16S RNA sequencing identified the increase of bacterial genera Akkermansia and Desulfovibrio in fecal samples of rotenone-induced mice. By contrast, FMT treatment remarkably restored the gut microbial community, thus ameliorating the gastrointestinal dysfunctions and the motor deficits of the PD mice. Further experiments revealed that FMT administration alleviated intestinal inflammation and barrier destruction, thus reducing the levels of systemic inflammation. Subsequently, FMT treatment attenuated blood-brain barrier (BBB) impairment and suppressed neuroinflammation in the substantia nigra (SN), which further decreased the damage of dopaminergic neurons. Additional mechanistic investigation discovered that FMT treatment reduced lipopolysaccharide (LPS) levels in the colon, the serum, and the SN, thereafter suppressing the TLR4/MyD88/NF-κB signaling pathway and its downstream pro-inflammatory products both in the SN and the colon. CONCLUSIONS: Our current study demonstrates that FMT treatment can correct the gut microbiota dysbiosis and ameliorate the rotenone-induced PD mouse model, in which suppression of the inflammation mediated by the LPS-TLR4 signaling pathway both in the gut and the brain possibly plays a significant role. Further, we prove that rotenone-induced microbiota dysbiosis is involved in the genesis of PD via the microbiota-gut-brain axis. Video abstract.
背景:帕金森病(PD)是一种常见的神经退行性疾病,不仅表现出明显的运动缺陷,还表现出胃肠道功能障碍。一致地,越来越明显的是,肠道微生物群影响 PD 发病机制中的肠道与大脑之间的通讯,称为微生物群-肠道-大脑轴。作为重建正常微生物群落的一种方法,粪便微生物群移植(FMT)在最近的研究中对 PD 发挥了有益的作用。在这里,在这项研究中,我们建立了慢性鱼藤酮诱导的 PD 小鼠模型,以评估 FMT 治疗对 PD 的保护作用,并探索潜在的机制,这也证明了通过微生物群-肠道-大脑轴,肠道微生物群失调参与 PD 的发病机制。
结果:我们表明,鱼藤酮给药引起的肠道微生物群失调导致 PD 小鼠的胃肠道功能障碍和行为表现不佳。此外,16S RNA 测序鉴定出鱼藤酮诱导的小鼠粪便样本中细菌属 Akkermansia 和 Desulfovibrio 的增加。相比之下,FMT 治疗显著恢复了肠道微生物群落,从而改善了 PD 小鼠的胃肠道功能障碍和运动缺陷。进一步的实验表明,FMT 给药减轻了肠道炎症和屏障破坏,从而降低了全身炎症水平。随后,FMT 治疗减轻了血脑屏障(BBB)损伤并抑制了黑质(SN)中的神经炎症,从而进一步减少了多巴胺能神经元的损伤。额外的机制研究发现,FMT 治疗降低了结肠、血清和 SN 中的脂多糖(LPS)水平,从而抑制了 TLR4/MyD88/NF-κB 信号通路及其在 SN 和结肠中的下游促炎产物。
结论:我们的研究表明,FMT 治疗可以纠正肠道微生物群失调,并改善鱼藤酮诱导的 PD 小鼠模型,其中 LPS-TLR4 信号通路介导的炎症抑制在肠道和大脑中可能发挥重要作用。此外,我们证明了鱼藤酮诱导的微生物群失调通过微生物群-肠道-大脑轴参与 PD 的发生。
Nan Fang Yi Ke Da Xue Xue Bao. 2024-2-20
Research (Wash D C). 2025-8-25
Mediators Inflamm. 2025-8-11
Signal Transduct Target Ther. 2025-7-11
Ann Neurol. 2021-6
Nat Rev Microbiol. 2021-4
ACS Chem Neurosci. 2020-10-21
J Ethnopharmacol. 2020-10-28
J Microbiol Biotechnol. 2020-8-28
Neurobiol Aging. 2020-4-18
Front Cell Infect Microbiol. 2020