Bashir Rabia, Bilal Muhammad Kashif, Bashir Amna, Asif Sana Ullah, Peng Yicheng
Yunnan Key Laboratory of Electromagnetic Materials and Devices, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 650091, P. R. China.
Department of Chemistry, Fatima Jinnah Women University, Rawalpindi, 46000, Pakistan.
Small. 2024 Nov;20(48):e2402500. doi: 10.1002/smll.202402500. Epub 2024 Sep 9.
In order to enhance the overall efficiency of colloidal quantum dots solar cells, it is crucial to suppress the recombination of charge carriers and minimize energy loss at the interfaces between the transparent electrode, electron transport layer (ETL), and colloidal quantum dots (CQDs) light-absorbing material. In the current study, ZnO/SrTiO (STO), ZnO/WO (TO), and ZnO/ZnSnO (ZTO) bilayers are introduced as an ETL using a spin-coating technique. The ZTO interlayer exhibits a smoother surface with a root-mean-square (RMS) value of ≈ 3.28 nm compared to STO and TO interlayers, which enables it to cover the surface of the ITO/ZnO substrate entirely and helps to prevent direct contact between the CQDs absorber layer and the ITO/ZnO substrate, thereby effectively preventing efficient charge recombination at the interfaces of the ETL/CQDs. Furthermore, the ZTO interlayer possesses superior electron mobility, a higher visible light transmission, and a suitable energy band structure compared to STO and TO. These characteristics are advantageous for extracting charge carriers and facilitating electron transport. The PbS CQDs solar cell based on the ITO/ZnO/ZTO/PbS-FABr/PbS-EDT/NiO/Au device configuration exhibits the highest efficiency of 15.28%, which is significantly superior than the ITO/ZnO/PbS-FABr/PbS-EDT/NiO/Au solar cell device (PCE = 14.38%). This study is anticipated to offer a practical approach to develop ultrathin and compact ETL for highly efficient CQDSCs.
为了提高胶体量子点太阳能电池的整体效率,抑制电荷载流子的复合并使透明电极、电子传输层(ETL)和胶体量子点(CQD)光吸收材料之间界面处的能量损失最小化至关重要。在当前研究中,采用旋涂技术引入了ZnO/SrTiO(STO)、ZnO/WO(TO)和ZnO/ZnSnO(ZTO)双层作为ETL。与STO和TO中间层相比,ZTO中间层表面更光滑,均方根(RMS)值约为3.28 nm,这使其能够完全覆盖ITO/ZnO衬底的表面,并有助于防止CQD吸收层与ITO/ZnO衬底直接接触,从而有效防止ETL/CQD界面处的有效电荷复合。此外,与STO和TO相比,ZTO中间层具有优异的电子迁移率、更高的可见光透射率和合适的能带结构。这些特性有利于提取电荷载流子并促进电子传输。基于ITO/ZnO/ZTO/PbS-FABr/PbS-EDT/NiO/Au器件结构的PbS CQD太阳能电池表现出最高效率15.28%,显著优于ITO/ZnO/PbS-FABr/PbS-EDT/NiO/Au太阳能电池器件(光电转换效率 = 14.38%)。预计这项研究将为开发用于高效CQDSCs的超薄紧凑ETL提供一种实用方法。