Wang Meng, Liu Sisi, Wei Aoshen, Luo Tianyu, Wen Xiaoyan, Li Ming-Yu, Lu Haifei
School of Science, Wuhan University of Technology, Wuhan, Hubei 430070, China.
Yangtzi Delta Region Institute of University of Electronic Science and Technology of China, Huzhou, Zhejiang 313098, China.
ACS Appl Mater Interfaces. 2024 May 15;16(19):24572-24579. doi: 10.1021/acsami.4c02069. Epub 2024 May 1.
Infrared (IR) solar cells, capable of converting low-energy IR photons to electron-hole pairs, are promising optoelectronic devices by broadening the utilization range of the solar spectrum to the short-wavelength IR region. The emerging PbS colloidal quantum dot (QD) IR solar cells attract much attention due to their tunable band gaps in the IR region, potential multiple exciton generation, and facile solution processing. In PbS QD solar cells, ZnO is commonly utilized as an electron transport layer (ETL) to establish a depleted heterostructure with a QD photoactive layer. However, band gap shrinkage of large PbS QDs makes it necessary to tailor the behaviors of the ZnO ETL for efficient carrier extraction in the devices. Herein, the characteristics of ZnO ETL are efficiently and flexibly tailored to match the QD layer by handily adjusting the postannealing process of ZnO ETL. With a suitable temperature, the well-matched energy level alignment and suppressed trap states are simultaneously achieved in the ZnO ETL, effectively reducing the nonradiative recombination and accelerating the electron injection from the QD layer to ETL. As a consequence, a high-performance PbS QD photovoltaic device with power conversion efficiencies (PCEs) of 10.09% and 1.37% is obtained under AM 1.5 and 1100 nm filtered solar illumination, demonstrating a simple and effective approach for achieving high-performance IR photoelectric devices.
红外(IR)太阳能电池能够将低能量的红外光子转换为电子 - 空穴对,通过将太阳光谱的利用范围扩展到短波长红外区域,是很有前景的光电器件。新兴的硫化铅胶体量子点(QD)红外太阳能电池因其在红外区域可调节的带隙、潜在的多激子产生以及简便的溶液处理工艺而备受关注。在硫化铅量子点太阳能电池中,氧化锌通常用作电子传输层(ETL),以与量子点光活性层建立耗尽型异质结构。然而,大尺寸硫化铅量子点的带隙收缩使得有必要调整氧化锌电子传输层的行为,以便在器件中实现高效的载流子提取。在此,通过巧妙地调整氧化锌电子传输层的退火后处理工艺,有效地且灵活地调整了氧化锌电子传输层的特性,以匹配量子点层。在合适的温度下,氧化锌电子传输层同时实现了良好匹配的能级排列和抑制的陷阱态,有效地减少了非辐射复合,并加速了电子从量子点层注入到电子传输层。结果,在AM 1.5和1100 nm滤光太阳光照下,获得了功率转换效率(PCE)分别为10.09%和1.37%的高性能硫化铅量子点光电器件,展示了一种实现高性能红外光电器件的简单有效方法。