Suppr超能文献

氢气氛中通过原子层沉积纳米层压制备的铂镍合金纳米颗粒的形成特性

Formation Characteristics of Pt-Ni Alloy Nanoparticles Fabricated by Nanolamination of Atomic Layer Deposition in Hydrogen.

作者信息

Liao Ming-Wei, Chin Tzu-Kang, Luo Xu-Feng, Chuang Yu-Chun, Perng Tsong-Pyng

机构信息

Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 300, Taiwan.

National Synchrotron Radiation Research Center, Hsinchu, 300, Taiwan.

出版信息

Small. 2024 Nov;20(48):e2404943. doi: 10.1002/smll.202404943. Epub 2024 Sep 9.

Abstract

Forced-flow atomic layer deposition nanolamination is employed to fabricate Pt-Ni nanoparticles on XC-72, with the compositions ranging from PtNi to PtNi. Hydrogen is used as a co-reactant for depositing Pt and Ni. The growth rate of Pt is slower than that using oxygen reactant, and the growth exhibits preferred orientation along the (111) plane. Ni shows much slower growth rate than Pt, and it is only selectively deposited on Pt, not on the substrate. Higher ratios of Ni would hinder subsequent stacking of Pt atoms, resulting in lower overall growth rate and smaller particles (1.3-2.1 nm). Alloying of Pt with Ni causes shifted lattice that leads to larger lattice parameter and d-spacing as Ni fraction increases. From the electronic state analysis, Pt 4f peaks are shifted to lower binding energies with increasing the Ni content, suggesting charge transfer from Ni to Pt. Schematic of the growth behavior is proposed. Most of the alloy nanoparticles exhibit higher electrochemical surface area and oxygen reduction reaction activity than those of commercial Pt. Especially, PtNi and PtNi show excellent mass activities of 0.76 and 0.59 A mg , respectively, higher than the DOE target of 2025, 0.44 A mg .

摘要

采用强制流原子层沉积纳米层压技术在XC - 72上制备Pt - Ni纳米颗粒,其组成范围从PtNi到PtNi。氢气用作沉积Pt和Ni的共反应物。Pt的生长速率比使用氧反应物时慢,且生长沿(111)面呈现择优取向。Ni的生长速率比Pt慢得多,并且它仅选择性地沉积在Pt上,而非衬底上。较高的Ni比例会阻碍Pt原子随后的堆积,导致总体生长速率降低和颗粒尺寸变小(1.3 - 2.1 nm)。Pt与Ni合金化会导致晶格发生位移,随着Ni含量增加,晶格参数和d间距增大。从电子态分析来看,随着Ni含量增加,Pt 4f峰向较低结合能方向移动,表明电荷从Ni转移到Pt。提出了生长行为的示意图。大多数合金纳米颗粒表现出比商业Pt更高的电化学表面积和氧还原反应活性。特别是,PtNi和PtNi分别表现出0.76和0.59 A mg的优异质量活性,高于2025年美国能源部目标值0.44 A mg。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验