Suppr超能文献

通过二次散斑图案分析进行微扫视跟踪

Microsaccades Tracking by Secondary Speckle Pattern Analysis.

作者信息

Shteinberg Ola, Agdarov Sergey, Beiderman Yafim, Bonneh Yoram S, Ziv Inbal, Zalevsky Zeev

机构信息

Faculty of Engineering, Bar-Ilan University, Ramat Gan, Israel.

School of Optometry and Vision Science, Faculty of Life Science, Bar-Ilan University, Ramat Gan, Israel.

出版信息

J Biophotonics. 2024 Sep 9:e202400184. doi: 10.1002/jbio.202400184.

Abstract

Here we propose a not pupil-dependent microsaccades tracking technique and a novel detection method. We present a proof of concept for detecting microsaccades using a non-contact laser-based photonic system recording and processing the temporal changes of speckle patterns scattered from an eye sclera. The data, simultaneously recorded by the speckle-based tracker (SBT) and the video-based eye tracker (Eyelink), was analyzed by the frequently used detection method of Engbert and Kliegl (E&K) and by advanced machine learning detection (MLD) techniques. We detected 93% of microsaccades in the SBT data out of microsaccades detected in the Eyelink data with the E&K method. By utilizing MLD, a precision of 86% was achieved. The findings of our study demonstrate a potential improvement in measuring tiny eye movements, such as microsaccades, using speckle-based eye tracking and, thus, an alternative to video-based eye tracking for detecting microsaccades.

摘要

在此,我们提出了一种不依赖瞳孔的微扫视跟踪技术和一种新颖的检测方法。我们展示了一种概念验证,即使用基于非接触激光的光子系统记录和处理从眼巩膜散射的散斑图案的时间变化来检测微扫视。由基于散斑的跟踪器(SBT)和基于视频的眼动跟踪仪(Eyelink)同时记录的数据,通过Engbert和Kliegl(E&K)常用的检测方法以及先进的机器学习检测(MLD)技术进行分析。使用E&K方法,我们在SBT数据中检测到的微扫视占Eyelink数据中检测到的微扫视的93%。通过利用MLD,实现了86%的精度。我们的研究结果表明,使用基于散斑的眼动跟踪在测量微小眼动(如微扫视)方面有潜在的改进,因此是用于检测微扫视的基于视频的眼动跟踪的一种替代方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验