Suppr超能文献

基于主成分和熵分析的激光散斑对比成像:一种用于深度无关血流评估的新方法。

Laser speckle contrast imaging with principal component and entropy analysis: a novel approach for depth-independent blood flow assessment.

作者信息

Surkov Yu, Timoshina P, Serebryakova I, Stavtcev D, Kozlov I, Piavchenko G, Meglinski I, Konovalov A, Telyshev D, Kuznetcov S, Genina E, Tuchin V

机构信息

Institution of Physics, Saratov State University, Saratov, 410012, Russia.

Scientific Medical Center, Saratov State University, Saratov, 410012, Russia.

出版信息

Front Optoelectron. 2025 Jan 3;18(1):1. doi: 10.1007/s12200-024-00143-1.

Abstract

Current study presents an advanced method for improving the visualization of subsurface blood vessels using laser speckle contrast imaging (LSCI), enhanced through principal component analysis (PCA) filtering. By combining LSCI and laser speckle entropy imaging with PCA filtering, the method effectively separates static and dynamic components of the speckle signal, significantly improving the accuracy of blood flow assessments, even in the presence of static scattering layers located above and below the vessel. Experiments conducted on optical phantoms, with the vessel depths ranging from 0.6 to 2 mm, and in vivo studies on a laboratory mouse ear demonstrate substantial improvements in image contrast and resolution. The method's sensitivity to blood flow velocity within the physiologic range (0.98-19.66 mm/s) is significantly enhanced, while its sensitivity to vessel depth is minimized. These results highlight the method's ability to assess blood flow velocity independently of vessel depth, overcoming a major limitation of conventional LSCI techniques. The proposed approach holds great potential for non-invasive biomedical imaging, offering improved diagnostic accuracy and contrast in vascular imaging. These findings may be particularly valuable for advancing the use of LSCI in clinical diagnostics and biomedical research, where high precision in blood flow monitoring is essential.

摘要

当前的研究提出了一种先进的方法,用于使用激光散斑对比成像(LSCI)改善地下血管的可视化,并通过主成分分析(PCA)滤波进行增强。通过将LSCI和激光散斑熵成像与PCA滤波相结合,该方法有效地分离了散斑信号的静态和动态成分,即使在血管上方和下方存在静态散射层的情况下,也显著提高了血流评估的准确性。在光学模型上进行的实验,血管深度范围为0.6至2毫米,以及在实验室小鼠耳朵上进行的体内研究表明,图像对比度和分辨率有了显著提高。该方法对生理范围内(0.98 - 19.66毫米/秒)血流速度的敏感性显著增强,而对血管深度的敏感性则降至最低。这些结果突出了该方法能够独立于血管深度评估血流速度的能力,克服了传统LSCI技术的一个主要限制。所提出的方法在无创生物医学成像方面具有巨大潜力,在血管成像中提供了更高的诊断准确性和对比度。这些发现对于推进LSCI在临床诊断和生物医学研究中的应用可能特别有价值,在这些领域中,血流监测的高精度至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b7c/11699174/4ab7210855e9/12200_2024_143_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验