Suppr超能文献

一种基于氧杂[5]螺旋烯的多环杂芳烃共轭聚合物:调整能级与相容性以用于高性能钙钛矿太阳能电池

Conjugated polymers of an oxa[5]helicene-derived polycyclic heteroaromatic: tailoring energy levels and compatibility for high-performance perovskite solar cells.

作者信息

Cai Yaohang, Zhang Yuyan, Fang Lingyi, Ren Yutong, Zhang Jidong, Yuan Yi, Zhang Jing, Wang Peng

机构信息

State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University Hangzhou 310058 China

State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 China.

出版信息

Chem Sci. 2024 Aug 28;15(37):15263-73. doi: 10.1039/d4sc04244a.

Abstract

In the quest to enhance the efficiency and durability of n-i-p perovskite solar cells (PSCs), engineering hole-transporting conjugated polymers with well-matched energy levels, exceptional film-forming properties, rapid hole transport, and superior moduli is paramount. Here, we present a novel approach involving the customization of a conjugated polymer, designated as p-DTPF4-EBEH, comprising alternating units of an oxa[5]helicene-based polycyclic heteroaromatic (DTPF4) and 5,5'-(2,5-di(hexyloxy)-1,4-phenylene)bis(3,4-ethylenedioxythiophene) (EBEH), synthesized through palladium-catalyzed direct arylation. Relative to homopolymers p-DTPF4 and p-EBEH, p-DTPF4-EBEH demonstrates a proper HOMO energy level, hole density, and hole mobility, alongside superior film-forming capabilities. Remarkably, compared to the commonly used hole transport material spiro-OMeTAD, p-DTPF4-EBEH not only exhibits superior film-forming property and hole mobility but also offers increased modulus and improved waterproofing. Incorporating p-DTPF4-EBEH as the hole transport material in PSCs results in an average power conversion efficiency of 25.8%, surpassing the 24.3% achieved with spiro-OMeTAD. Importantly, devices utilizing p-DTPF4-EBEH demonstrate enhanced thermal storage stability at 85 °C, along with operational robustness.

摘要

在提高n-i-p钙钛矿太阳能电池(PSC)效率和耐久性的探索中,设计具有匹配能级、优异成膜性能、快速空穴传输和高模量的空穴传输共轭聚合物至关重要。在此,我们提出一种新方法,即定制一种共轭聚合物,命名为p-DTPF4-EBEH,它由基于氧化[5]螺旋烯的多环杂芳烃(DTPF4)和5,5'-(2,5-二(己氧基)-1,4-亚苯基)双(3,4-乙撑二氧噻吩)(EBEH)的交替单元组成,通过钯催化直接芳基化合成。相对于均聚物p-DTPF4和p-EBEH,p-DTPF4-EBEH具有合适的最高占据分子轨道(HOMO)能级、空穴密度和空穴迁移率,同时具有优异的成膜能力。值得注意的是,与常用的空穴传输材料螺环-OMeTAD相比,p-DTPF4-EBEH不仅表现出优异的成膜性能和空穴迁移率,还具有更高的模量和更好的防水性。在PSC中使用p-DTPF4-EBEH作为空穴传输材料,平均功率转换效率达到25.8%,超过了使用螺环-OMeTAD时的24.3%。重要的是,使用p-DTPF4-EBEH的器件在85°C下表现出增强的热存储稳定性以及运行稳健性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2eb/11423641/57aa78d25d49/d4sc04244a-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验