Diez-Cabanes Valentin, Granados-Tavera Kevin, Shere Inderdip, Cárdenas-Jirón Gloria, Maurin Guillaume
ICGM, Univ. Montpellier, CNRS, ENSCM Montpellier 34293 France
Laboratory of Theoretical Chemistry, Faculty of Chemistry and Biology, University of Santiago de Chile (USACH) 9170022 Santiago Chile.
Chem Sci. 2024 Aug 22;15(37):15232-42. doi: 10.1039/d4sc03630a.
Photocatalysis appears as one of the most promising avenues to shift towards sustainable sources of energy, owing to its ability to transform solar light into chemical energy, production of chemical fuels oxygen evolution (OER) and CO reduction (CORR) reactions. Ti metal-organic frameworks (MOFs) and graphitic carbon nitride derivatives, poly-heptazine imides (PHI) are appealing CORR and OER photo-catalysts respectively. Engineering of an innovative Z-scheme heterojunction by assembling a Ti-MOF and PHI offers an unparalleled opportunity to mimick an artificial photosynthesis device for dual CORR/OER catalysis. Along this path, understanding of the photophysical processes controlling the MOF/PHI interfacial charge recombination is vital to fine tune the electronic and chemical features of the two components and devise the optimum heterojunction. To address this challenge, we developed a modelling approach integrating force field Molecular Dynamics (MD), Time-Dependent Density Functional Theory (TD-DFT) and Non-Equilibrium Green Function DFT (NEGF-DFT) tools with the aim of systematically exploring the structuring, the opto-electronic and transport properties of MOF/PHI heterojunctions. We revealed that the nature of the MOF/PHI interactions, the interfacial charge transfer directionality and the absorption energy windows of the resulting heterojunctions can be fine tuned by incorporating Cu species in the MOF and/or doping PHI with mono- or divalent cations. Interestingly, we demonstrated that the interfacial charge transfer can be further boosted by engineering MOF/PHI device junctions and application of negative bias. Overall, our generalizable computational methodology unravelled that the performance of CORR/OER photoreactors can be optimized by chemical and electronic tuning of the components but also by device design based on reliable structure-property rules, paving the way towards practical exploitation.
光催化因其能够将太阳光转化为化学能、生产化学燃料、进行析氧反应(OER)和CO还原反应(CORR),而成为转向可持续能源最有前景的途径之一。钛金属有机框架(MOF)和石墨相氮化碳衍生物——聚庚嗪酰亚胺(PHI)分别是有吸引力的CORR和OER光催化剂。通过组装Ti-MOF和PHI构建创新的Z型异质结,为模拟用于双重CORR/OER催化的人工光合作用装置提供了无与伦比的机会。沿着这条道路,理解控制MOF/PHI界面电荷复合的光物理过程对于微调这两种组分的电子和化学特性以及设计最佳异质结至关重要。为应对这一挑战,我们开发了一种建模方法,将力场分子动力学(MD)、含时密度泛函理论(TD-DFT)和非平衡格林函数DFT(NEGF-DFT)工具相结合,旨在系统地探索MOF/PHI异质结的结构、光电和传输性质。我们发现,通过在MOF中引入Cu物种和/或用单价或二价阳离子掺杂PHI,可以微调MOF/PHI相互作用的性质、界面电荷转移的方向性以及所得异质结的吸收能窗。有趣的是,我们证明了通过设计MOF/PHI器件结和施加负偏压,可以进一步促进界面电荷转移。总体而言,我们的通用计算方法揭示,CORR/OER光反应器的性能可以通过对组分进行化学和电子调谐,也可以通过基于可靠的结构-性质规则进行器件设计来优化,为实际应用铺平了道路。