Bao Jianghan, Li Weihan, Huang Siqi, Yu Wen Ming, Liu Che, Cui Tie Jun
The State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China.
Institute of Electromagnetic Space, Southeast University, Nanjing 210096, China.
iScience. 2024 Jul 26;27(9):110595. doi: 10.1016/j.isci.2024.110595. eCollection 2024 Sep 20.
Programmable metasurfaces have garnered significant attention for their capacity to dynamically manipulate electromagnetic (EM) waves. In particular, the programmable metasurfaces offer to generate a wide range of EM beams when the appropriate digital coding patterns are designed. Traditionally, optimizing the coding patterns involves time-consuming nonlinear optimization algorithms due to the high computational complexity. In this study, we propose a physics-assisted deep learning (DL) model that can calculate the coding pattern in milliseconds, requiring only a simple depiction of the desired beam. An extended version of the macroscopic model for digital coding metasurface is introduced as the physics-driven component, which can compute the radiation pattern rapidly based on the provided coding pattern. The integration of the macroscopic model ensures to generate the physics-compliant coding designs. We validate the proposed method experimentally by measuring several coding patterns for both single-beam and dual-beam scenarios, which demonstrate good performance of beamforming.
可编程超表面因其动态操纵电磁波(EM)的能力而备受关注。特别是,当设计出合适的数字编码图案时,可编程超表面能够生成广泛的电磁波束。传统上,由于计算复杂度高,优化编码图案需要耗时的非线性优化算法。在本研究中,我们提出了一种物理辅助深度学习(DL)模型,该模型可以在几毫秒内计算出编码图案,只需要对所需波束进行简单描述。引入了数字编码超表面宏观模型的扩展版本作为物理驱动组件,它可以根据提供的编码图案快速计算辐射方向图。宏观模型的集成确保生成符合物理规律的编码设计。我们通过测量单波束和双波束场景的几种编码图案,对所提出的方法进行了实验验证,结果表明其波束形成性能良好。