Suppr超能文献

用于应变传感的可拉伸多壁碳纳米管/热塑性聚氨酯导电聚合物的增材制造

Additive Manufacturing of Stretchable Multi-Walled Carbon Nanotubes/Thermoplastic Polyurethanes Conducting Polymers for Strain Sensing.

作者信息

Liu Fuxi, Bai Dezhi, Xie Deqiao, Lv Fei, Shen Lida, Tian Zongjun, Zhao Jianfeng

机构信息

Department of Mechanical Manufacturing and Automation, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China.

JITRI Institute of Precision Manufacturing, Nanjing, China.

出版信息

3D Print Addit Manuf. 2024 Apr 16;11(2):e698-e708. doi: 10.1089/3dp.2022.0223. eCollection 2024 Apr.

Abstract

With the development of science and technology, flexible sensors play an indispensable role in body monitoring. Rapid prototyping of high-performance flexible sensors has become an important method to develop flexible sensors. The purpose of this study was to develop a flexible resin with multi-walled carbon nanotubes (MWCNTs) for the rapid fabrication of flexible sensors using digital light processing additive manufacturing. In this study, MWCNTs were mixed in thermoplastic polyurethane (TPU) photosensitive resin to prepare polymer-matrix composites, and a flexible strain sensor was prepared using self-developed additive equipment. The results showed that the 1.2 wt% MWCNTs/TPU composite flexible sensor had high gauge factor of 9.988 with a linearity up to 45% strain and high mechanical durability (1000 cycles). Furthermore, the sensor could be used for gesture recognition and monitoring and has good performance. This method is expected to provide a new idea for the rapid personalized forming of flexible sensors.

摘要

随着科学技术的发展,柔性传感器在人体监测中发挥着不可或缺的作用。高性能柔性传感器的快速成型已成为开发柔性传感器的重要方法。本研究的目的是开发一种含多壁碳纳米管(MWCNTs)的柔性树脂,用于通过数字光处理增材制造快速制造柔性传感器。在本研究中,将多壁碳纳米管混入热塑性聚氨酯(TPU)光敏树脂中制备聚合物基复合材料,并使用自行开发的增材设备制备柔性应变传感器。结果表明,1.2 wt% 的多壁碳纳米管/热塑性聚氨酯复合柔性传感器具有高达9.988的应变片系数,线性度高达45% 应变,并且具有高机械耐久性(1000次循环)。此外,该传感器可用于手势识别和监测,性能良好。该方法有望为柔性传感器的快速个性化成型提供新思路。

相似文献

1
Additive Manufacturing of Stretchable Multi-Walled Carbon Nanotubes/Thermoplastic Polyurethanes Conducting Polymers for Strain Sensing.
3D Print Addit Manuf. 2024 Apr 16;11(2):e698-e708. doi: 10.1089/3dp.2022.0223. eCollection 2024 Apr.
6
High-Performance Foam-Shaped Strain Sensor Based on Carbon Nanotubes and TiCT MXene for the Monitoring of Human Activities.
ACS Nano. 2021 Jun 22;15(6):9690-9700. doi: 10.1021/acsnano.1c00259. Epub 2021 Jun 4.
7
Preparation and laser sintering of a thermoplastic polyurethane carbon nanotube composite-based pressure sensor.
RSC Adv. 2020 Jun 22;10(40):23644-23652. doi: 10.1039/d0ra04479b. eCollection 2020 Jun 19.
9
Carbon Nanotube Coated Fibrous Tubes for Highly Stretchable Strain Sensors Having High Linearity.
Nanomaterials (Basel). 2022 Jul 18;12(14):2458. doi: 10.3390/nano12142458.
10
Multifunctional Elastic Nanocomposites with Extremely Low Concentrations of Single-Walled Carbon Nanotubes.
ACS Appl Mater Interfaces. 2022 Apr 27;14(16):18866-18876. doi: 10.1021/acsami.2c01086. Epub 2022 Apr 14.

本文引用的文献

1
Wearable Bioelectronics for Chronic Wound Management.
Adv Funct Mater. 2022 Apr 25;32(17). doi: 10.1002/adfm.202111022. Epub 2021 Dec 26.
2
Facile Fabrication of Highly Sensitive Thermoplastic Polyurethane Sensors with Surface- and Interface-Impregnated 3D Conductive Networks.
ACS Appl Mater Interfaces. 2022 May 18;14(19):22615-22625. doi: 10.1021/acsami.2c03351. Epub 2022 May 4.
3
Topological supramolecular network enabled high-conductivity, stretchable organic bioelectronics.
Science. 2022 Mar 25;375(6587):1411-1417. doi: 10.1126/science.abj7564. Epub 2022 Mar 24.
4
High-brightness all-polymer stretchable LED with charge-trapping dilution.
Nature. 2022 Mar;603(7902):624-630. doi: 10.1038/s41586-022-04400-1. Epub 2022 Mar 23.
5
A New Class of Electronic Devices Based on Flexible Porous Substrates.
Adv Sci (Weinh). 2022 Mar;9(7):e2105084. doi: 10.1002/advs.202105084. Epub 2022 Jan 17.
6
Recent Progress in Active Mechanical Metamaterials and Construction Principles.
Adv Sci (Weinh). 2022 Jan;9(1):e2102662. doi: 10.1002/advs.202102662. Epub 2021 Oct 29.
7
3D-Printed Anisotropic Polymer Materials for Functional Applications.
Adv Mater. 2022 Feb;34(5):e2102877. doi: 10.1002/adma.202102877. Epub 2021 Dec 16.
9
3D Printing of Superhydrophobic Objects with Bulk Nanostructure.
Adv Mater. 2021 Nov;33(45):e2106068. doi: 10.1002/adma.202106068. Epub 2021 Sep 28.
10
Printable Smart Materials and Devices: Strategies and Applications.
Chem Rev. 2022 Mar 9;122(5):5144-5164. doi: 10.1021/acs.chemrev.1c00303. Epub 2021 Aug 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验