Liu Fuxi, Bai Dezhi, Xie Deqiao, Lv Fei, Shen Lida, Tian Zongjun, Zhao Jianfeng
Department of Mechanical Manufacturing and Automation, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China.
JITRI Institute of Precision Manufacturing, Nanjing, China.
3D Print Addit Manuf. 2024 Apr 16;11(2):e698-e708. doi: 10.1089/3dp.2022.0223. eCollection 2024 Apr.
With the development of science and technology, flexible sensors play an indispensable role in body monitoring. Rapid prototyping of high-performance flexible sensors has become an important method to develop flexible sensors. The purpose of this study was to develop a flexible resin with multi-walled carbon nanotubes (MWCNTs) for the rapid fabrication of flexible sensors using digital light processing additive manufacturing. In this study, MWCNTs were mixed in thermoplastic polyurethane (TPU) photosensitive resin to prepare polymer-matrix composites, and a flexible strain sensor was prepared using self-developed additive equipment. The results showed that the 1.2 wt% MWCNTs/TPU composite flexible sensor had high gauge factor of 9.988 with a linearity up to 45% strain and high mechanical durability (1000 cycles). Furthermore, the sensor could be used for gesture recognition and monitoring and has good performance. This method is expected to provide a new idea for the rapid personalized forming of flexible sensors.
随着科学技术的发展,柔性传感器在人体监测中发挥着不可或缺的作用。高性能柔性传感器的快速成型已成为开发柔性传感器的重要方法。本研究的目的是开发一种含多壁碳纳米管(MWCNTs)的柔性树脂,用于通过数字光处理增材制造快速制造柔性传感器。在本研究中,将多壁碳纳米管混入热塑性聚氨酯(TPU)光敏树脂中制备聚合物基复合材料,并使用自行开发的增材设备制备柔性应变传感器。结果表明,1.2 wt% 的多壁碳纳米管/热塑性聚氨酯复合柔性传感器具有高达9.988的应变片系数,线性度高达45% 应变,并且具有高机械耐久性(1000次循环)。此外,该传感器可用于手势识别和监测,性能良好。该方法有望为柔性传感器的快速个性化成型提供新思路。