Suppr超能文献

用于增强不同牛奶类型分类的振动光谱数据融合

Vibrational spectroscopy data fusion for enhanced classification of different milk types.

作者信息

Mohammadi Saeedeh, Gowen Aoife, O'Donnell Colm

机构信息

School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin 4, Ireland.

出版信息

Heliyon. 2024 Aug 15;10(16):e36385. doi: 10.1016/j.heliyon.2024.e36385. eCollection 2024 Aug 30.

Abstract

The aim of this study is to classify seven types of Irish milk (butter, fresh, heart active, lactose free, light, protein, and slimline), supplied by a specific company, using vibrational spectroscopy methods: Near infrared (NIR), mid infrared (MIR), and Raman spectroscopy. In this regard, chemometric methods were used, and the impact of spectral data fusion on prediction accuracy was evaluated. A total of 105 samples were tested, with 21 used in the test set. The study assessed principal component analysis (PCA), partial least square discriminant analysis (PLS-DA), and sequential and orthogonalized partial least squares linear discriminant analysis (SO-PLS-LDA) for classifying different milk types. The prediction accuracy, when applying PLS-DA on individual blocks of data and low-level fused data, did not exceed 85.71 %. However, implementing the SO-PLS-LDA strategy significantly improved the accuracy to 95 %, suggesting a promising method for the development of classification models for milk using data fusion strategies.

摘要

本研究的目的是使用振动光谱方法(近红外(NIR)、中红外(MIR)和拉曼光谱)对某特定公司供应的七种爱尔兰牛奶(黄油奶、鲜奶、有益心脏健康奶、无乳糖奶、低脂奶、高蛋白奶和低热卡奶)进行分类。在这方面,使用了化学计量学方法,并评估了光谱数据融合对预测准确性的影响。总共测试了105个样本,其中21个用于测试集。该研究评估了主成分分析(PCA)、偏最小二乘判别分析(PLS-DA)以及顺序和正交化偏最小二乘线性判别分析(SO-PLS-LDA)对不同牛奶类型的分类效果。当将PLS-DA应用于单个数据块和低水平融合数据时,预测准确率不超过85.71%。然而,实施SO-PLS-LDA策略可将准确率显著提高到95%,这表明数据融合策略为开发牛奶分类模型提供了一种有前景的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b860/11378925/d4f1e575cb24/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验