Suppr超能文献

MRIS:一种用于多模态图像合成的多模态检索方法。

MRIS: A Multi-modal Retrieval Approach for Image Synthesis on Diverse Modalities.

作者信息

Chen Boqi, Niethammer Marc

机构信息

Department of Computer Science, University of North Carolina at Chapel Hill.

出版信息

Med Image Comput Comput Assist Interv. 2023 Oct;14229:271-281. doi: 10.1007/978-3-031-43999-5_26. Epub 2023 Oct 1.

Abstract

Multiple imaging modalities are often used for disease diagnosis, prediction, or population-based analyses. However, not all modalities might be available due to cost, different study designs, or changes in imaging technology. If the differences between the types of imaging are small, data harmonization approaches can be used; for larger changes, direct image synthesis approaches have been explored. In this paper, we develop an approach based on multi-modal metric learning to synthesize images of diverse modalities. We use metric learning via multi-modal image retrieval, resulting in embeddings that can relate images of different modalities. Given a large image database, the learned image embeddings allow us to use k-nearest neighbor (-NN) regression for image synthesis. Our driving medical problem is knee osteoarthritis (KOA), but our developed method is general after proper image alignment. We test our approach by synthesizing cartilage thickness maps obtained from 3D magnetic resonance (MR) images using 2D radiographs. Our experiments show that the proposed method outperforms direct image synthesis and that the synthesized thickness maps retain information relevant to downstream tasks such as progression prediction and Kellgren-Lawrence grading (KLG). Our results suggest that retrieval approaches can be used to obtain high-quality and meaningful image synthesis results given large image databases.

摘要

多种成像方式常用于疾病诊断、预测或基于人群的分析。然而,由于成本、不同的研究设计或成像技术的变化,并非所有成像方式都可用。如果成像类型之间的差异较小,可以使用数据协调方法;对于较大的变化,则探索了直接图像合成方法。在本文中,我们开发了一种基于多模态度量学习的方法来合成不同模态的图像。我们通过多模态图像检索使用度量学习,得到能够关联不同模态图像的嵌入。给定一个大型图像数据库,学习到的图像嵌入使我们能够使用k近邻(-NN)回归进行图像合成。我们的驱动医学问题是膝关节骨关节炎(KOA),但经过适当的图像对齐后,我们开发的方法具有通用性。我们通过使用二维X线照片合成从三维磁共振(MR)图像获得的软骨厚度图来测试我们的方法。我们的实验表明,所提出的方法优于直接图像合成,并且合成的厚度图保留了与下游任务(如进展预测和凯尔格伦-劳伦斯分级(KLG))相关的信息。我们的结果表明,在有大型图像数据库的情况下,检索方法可用于获得高质量且有意义的图像合成结果。

相似文献

1
MRIS: A Multi-modal Retrieval Approach for Image Synthesis on Diverse Modalities.MRIS:一种用于多模态图像合成的多模态检索方法。
Med Image Comput Comput Assist Interv. 2023 Oct;14229:271-281. doi: 10.1007/978-3-031-43999-5_26. Epub 2023 Oct 1.
2
Hi-Net: Hybrid-Fusion Network for Multi-Modal MR Image Synthesis.Hi-Net:用于多模态磁共振图像合成的混合融合网络。
IEEE Trans Med Imaging. 2020 Sep;39(9):2772-2781. doi: 10.1109/TMI.2020.2975344. Epub 2020 Feb 20.

本文引用的文献

5
Networks for Joint Affine and Non-parametric Image Registration.联合仿射和非参数图像配准网络
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2019 Jun;2019:4219-4228. doi: 10.1109/cvpr.2019.00435. Epub 2020 Jan 9.
7
Contextual Additive Networks to Efficiently Boost 3D Image Segmentations.用于高效提升3D图像分割的上下文加法网络。
Deep Learn Med Image Anal Multimodal Learn Clin Decis Support (2018). 2018 Sep;11045:92-100. Epub 2018 Sep 20.
8
UK Biobank: opportunities for cardiovascular research.英国生物银行:心血管研究的机遇
Eur Heart J. 2019 Apr 7;40(14):1158-1166. doi: 10.1093/eurheartj/ehx254.
9
Classifications in Brief: Kellgren-Lawrence Classification of Osteoarthritis.简要分类:骨关节炎的凯尔格伦-劳伦斯分类
Clin Orthop Relat Res. 2016 Aug;474(8):1886-93. doi: 10.1007/s11999-016-4732-4. Epub 2016 Feb 12.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验