IEEE Trans Med Imaging. 2020 Sep;39(9):2772-2781. doi: 10.1109/TMI.2020.2975344. Epub 2020 Feb 20.
Magnetic resonance imaging (MRI) is a widely used neuroimaging technique that can provide images of different contrasts (i.e., modalities). Fusing this multi-modal data has proven particularly effective for boosting model performance in many tasks. However, due to poor data quality and frequent patient dropout, collecting all modalities for every patient remains a challenge. Medical image synthesis has been proposed as an effective solution, where any missing modalities are synthesized from the existing ones. In this paper, we propose a novel Hybrid-fusion Network (Hi-Net) for multi-modal MR image synthesis, which learns a mapping from multi-modal source images (i.e., existing modalities) to target images (i.e., missing modalities). In our Hi-Net, a modality-specific network is utilized to learn representations for each individual modality, and a fusion network is employed to learn the common latent representation of multi-modal data. Then, a multi-modal synthesis network is designed to densely combine the latent representation with hierarchical features from each modality, acting as a generator to synthesize the target images. Moreover, a layer-wise multi-modal fusion strategy effectively exploits the correlations among multiple modalities, where a Mixed Fusion Block (MFB) is proposed to adaptively weight different fusion strategies. Extensive experiments demonstrate the proposed model outperforms other state-of-the-art medical image synthesis methods.
磁共振成像(MRI)是一种广泛使用的神经影像学技术,可以提供不同对比度(即模态)的图像。融合这种多模态数据已被证明在许多任务中特别有效地提高模型性能。然而,由于数据质量差和患者经常流失,为每个患者收集所有模态仍然是一个挑战。医学图像合成已被提出作为一种有效的解决方案,其中任何缺失的模态都可以从现有的模态中合成。在本文中,我们提出了一种用于多模态磁共振图像合成的新型混合融合网络(Hi-Net),它学习从多模态源图像(即现有模态)到目标图像(即缺失模态)的映射。在我们的 Hi-Net 中,使用特定于模态的网络来学习每个模态的表示,使用融合网络来学习多模态数据的公共潜在表示。然后,设计了一个多模态合成网络,将潜在表示与来自每个模态的分层特征进行密集组合,作为生成器来合成目标图像。此外,提出了一种基于层的多模态融合策略,有效地利用了多个模态之间的相关性,其中提出了混合融合块(MFB)来自适应地加权不同的融合策略。大量实验表明,所提出的模型优于其他最先进的医学图像合成方法。