Suppr超能文献

社交媒体中可解释的抑郁症状检测

Explainable depression symptom detection in social media.

作者信息

Bao Eliseo, Pérez Anxo, Parapar Javier

机构信息

Information Retrieval Lab (IRLab), Centro de Investigación en Tecnoloxías da Información e da Comunicación (CITIC), Campus de Elviña, 15071 A Coruña, Galicia Spain.

出版信息

Health Inf Sci Syst. 2024 Sep 6;12(1):47. doi: 10.1007/s13755-024-00303-9. eCollection 2024 Dec.

Abstract

Users of social platforms often perceive these sites as supportive spaces to post about their mental health issues. Those conversations contain important traces about individuals' health risks. Recently, researchers have exploited this online information to construct mental health detection models, which aim to identify users at risk on platforms like Twitter, Reddit or Facebook. Most of these models are focused on achieving good classification results, ignoring the explainability and interpretability of the decisions. Recent research has pointed out the importance of using clinical markers, such as the use of symptoms, to improve trust in the computational models by health professionals. In this paper, we introduce transformer-based architectures designed to detect and explain the appearance of depressive symptom markers in user-generated content from social media. We present two approaches: (i) train a model to classify, and another one to explain the classifier's decision separately and (ii) unify the two tasks simultaneously within a single model. Additionally, for this latter manner, we also investigated the performance of recent conversational Large Language Models (LLMs) utilizing both in-context learning and finetuning. Our models provide natural language explanations, aligning with validated symptoms, thus enabling clinicians to interpret the decisions more effectively. We evaluate our approaches using recent symptom-focused datasets, using both offline metrics and expert-in-the-loop evaluations to assess the quality of our models' explanations. Our findings demonstrate that it is possible to achieve good classification results while generating interpretable symptom-based explanations.

摘要

社交平台用户常常将这些网站视为可以发布自身心理健康问题的支持性空间。这些对话包含了有关个人健康风险的重要线索。最近,研究人员利用这些在线信息构建心理健康检测模型,旨在识别推特、红迪网或脸书等平台上有风险的用户。这些模型大多专注于取得良好的分类结果,而忽略了决策的可解释性和可阐释性。最近的研究指出了使用临床指标(如症状的使用)以提高健康专业人员对计算模型信任度的重要性。在本文中,我们介绍了基于Transformer的架构,旨在检测并解释社交媒体用户生成内容中抑郁症状指标的出现情况。我们提出了两种方法:(i)训练一个模型进行分类,再训练另一个模型单独解释分类器的决策;(ii)在单个模型中同时统一这两项任务。此外,对于后一种方式,我们还研究了利用上下文学习和微调的近期对话式大语言模型(LLM)的性能。我们的模型提供与已验证症状相符的自然语言解释,从而使临床医生能够更有效地解释决策。我们使用近期以症状为重点的数据集评估我们的方法,同时使用离线指标和专家参与评估来评估我们模型解释的质量。我们的研究结果表明,在生成基于症状的可解释性解释的同时,有可能取得良好的分类结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65f4/11379836/ea615ead04e5/13755_2024_303_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验