Suppr超能文献

污名、生物标志物与算法偏差:人工智能在精准行为健康领域的建议

Stigma, biomarkers, and algorithmic bias: recommendations for precision behavioral health with artificial intelligence.

作者信息

Walsh Colin G, Chaudhry Beenish, Dua Prerna, Goodman Kenneth W, Kaplan Bonnie, Kavuluru Ramakanth, Solomonides Anthony, Subbian Vignesh

机构信息

Biomedical Informatics, Medicine and Psychiatry, Vanderbilt University Medical Center, 2525 West End, Suite 1475, Nashville, TN, USA.

School of Computing and Informatics, University of Louisiana at Lafayette, Lafayette, Louisiana, USA.

出版信息

JAMIA Open. 2020 Jan 22;3(1):9-15. doi: 10.1093/jamiaopen/ooz054. eCollection 2020 Apr.

Abstract

Effective implementation of artificial intelligence in behavioral healthcare delivery depends on overcoming challenges that are pronounced in this domain. Self and social stigma contribute to under-reported symptoms, and under-coding worsens ascertainment. Health disparities contribute to algorithmic bias. Lack of reliable biological and clinical markers hinders model development, and model explainability challenges impede trust among users. In this perspective, we describe these challenges and discuss design and implementation recommendations to overcome them in intelligent systems for behavioral and mental health.

摘要

在行为健康护理中有效实施人工智能取决于克服该领域中明显存在的挑战。自我污名和社会污名导致症状报告不足,编码不足则使诊断情况恶化。健康差距导致算法偏差。缺乏可靠的生物学和临床标志物阻碍了模型开发,而模型可解释性方面的挑战则妨碍了用户之间的信任。从这个角度出发,我们描述了这些挑战,并讨论了在行为和心理健康智能系统中克服这些挑战的设计与实施建议。

相似文献

5
The medical algorithmic audit.医学算法审计
Lancet Digit Health. 2022 May;4(5):e384-e397. doi: 10.1016/S2589-7500(22)00003-6. Epub 2022 Apr 5.
7
Artificial Intelligence and the Implementation Challenge.人工智能与实施挑战
J Med Internet Res. 2019 Jul 10;21(7):e13659. doi: 10.2196/13659.
9
Algorithmic Political Bias in Artificial Intelligence Systems.人工智能系统中的算法政治偏见
Philos Technol. 2022;35(2):25. doi: 10.1007/s13347-022-00512-8. Epub 2022 Mar 30.

引用本文的文献

本文引用的文献

8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验