Suppr超能文献

相似文献

1
Investigation of 3D Printed Bioresorbable Vascular Scaffold Crimping Behavior.
Adv Mater Technol. 2024 Apr 18;9(8). doi: 10.1002/admt.202301698. Epub 2024 Feb 29.
2
Investigation of 3D Printed Bioresorbable Vascular Scaffold Crimping Behavior.
bioRxiv. 2023 Oct 30:2023.10.26.564253. doi: 10.1101/2023.10.26.564253.
3
Employing synchrotron X-ray scattering and microscopy to explore microstructural mysteries in bioresorbable vascular scaffolds.
Acta Biomater. 2025 Jan 15;192:175-188. doi: 10.1016/j.actbio.2024.10.048. Epub 2024 Nov 17.
4
Effects of structural design on the mechanical performances of poly-L-lactic acid cardiovascular scaffolds using FEA and in vitro methods.
J Mech Behav Biomed Mater. 2025 Mar;163:106849. doi: 10.1016/j.jmbbm.2024.106849. Epub 2024 Dec 5.
5
Exploring a parallel rheological framework to capture the mechanical behaviour of a thin-strut polymeric bioresorbable coronary scaffold.
J Mech Behav Biomed Mater. 2022 Jun;130:105154. doi: 10.1016/j.jmbbm.2022.105154. Epub 2022 Mar 15.
6
Degree of bioresorbable vascular scaffold expansion modulates loss of essential function.
Acta Biomater. 2015 Oct;26:195-204. doi: 10.1016/j.actbio.2015.08.009. Epub 2015 Aug 12.
7
Investigating the Equivalent Plastic Strain in a Variable Ring Length and Strut Width Thin-Strut Bioresorbable Scaffold.
Cardiovasc Eng Technol. 2022 Dec;13(6):899-914. doi: 10.1007/s13239-022-00625-3. Epub 2022 Jul 11.
8
Crimping-induced structural gradients explain the lasting strength of poly l-lactide bioresorbable vascular scaffolds during hydrolysis.
Proc Natl Acad Sci U S A. 2018 Oct 9;115(41):10239-10244. doi: 10.1073/pnas.1807347115. Epub 2018 Sep 17.
9
3D-printed, citrate-based bioresorbable vascular scaffolds for coronary artery angioplasty.
Bioact Mater. 2024 May 5;38:195-206. doi: 10.1016/j.bioactmat.2024.04.030. eCollection 2024 Aug.
10
A computational study of crimping and expansion of bioresorbable polymeric stents.
Mech Time Depend Mater. 2018;22(2):273-290. doi: 10.1007/s11043-017-9371-y. Epub 2017 Oct 30.

本文引用的文献

1
3D-Printed Radiopaque Bioresorbable Stents to Improve Device Visualization.
Adv Healthc Mater. 2022 Dec;11(23):e2201955. doi: 10.1002/adhm.202201955. Epub 2022 Oct 17.
2
A Review on Manufacturing and Post-Processing Technology of Vascular Stents.
Micromachines (Basel). 2022 Jan 16;13(1):140. doi: 10.3390/mi13010140.
3
A review of the incidence, outcome, and management of venous stent migration.
J Vasc Surg Venous Lymphat Disord. 2022 Mar;10(2):482-490. doi: 10.1016/j.jvsv.2021.07.015. Epub 2022 Jan 11.
6
"The Unpredictable ABSORB" - Very Late Stent Thrombosis of Bioresorbable Vascular Scaffold.
Heart Views. 2019 Apr-Jun;20(2):65-69. doi: 10.4103/HEARTVIEWS.HEARTVIEWS_18_19.
7
Mechanical properties and degradation of drug eluted bioresorbable vascular scaffolds prepared by three-dimensional printing technology.
J Biomater Sci Polym Ed. 2019 May;30(7):547-560. doi: 10.1080/09205063.2019.1586303. Epub 2019 Apr 7.
8
3D-Printed PCL/PLA Composite Stents: Towards a New Solution to Cardiovascular Problems.
Materials (Basel). 2018 Sep 11;11(9):1679. doi: 10.3390/ma11091679.
9
Effect of vascular scaffold composition on release of sirolimus.
Eur J Pharm Biopharm. 2018 Nov;132:41-49. doi: 10.1016/j.ejpb.2018.08.015. Epub 2018 Sep 1.
10
A computational study of crimping and expansion of bioresorbable polymeric stents.
Mech Time Depend Mater. 2018;22(2):273-290. doi: 10.1007/s11043-017-9371-y. Epub 2017 Oct 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验