State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
Lab Chip. 2024 Sep 24;24(19):4623-4631. doi: 10.1039/d4lc00486h.
Monodisperse biodegradable polymer microspheres show broad applications in drug delivery and other fields. In this study, we developed an effective method that combines microfluidics with interfacial instability to prepare monodispersed poly(lactic--glycolic acid)--polyethylene glycol (PLGA-PEG)/poly(lactic--glycolic acid) (PLGA) microspheres with tailored surface morphology. By adjusting the mass ratio of PLGA-PEG to PLGA, the concentration of stabilizers and the type of PLGA, we generated microspheres with various unique folded morphologies, such as "fishtail-like", "lace-like" and "sponge-like" porous structures. Additionally, we demonstrated that risperidone-loaded PLGA-PEG/PLGA microspheres with these folded morphologies significantly enhanced drug release, particularly in the initial stage, by exhibiting a logarithmic release profile. This feature could potentially address the issue of delayed release commonly observed in sustained-release formulations. This study presents a straightforward yet effective approach to construct precisely engineered microspheres offering enhanced control over drug release dynamics.
单分散可生物降解聚合物微球在药物传递和其他领域有广泛的应用。在这项研究中,我们开发了一种有效的方法,将微流控技术与界面不稳定性结合起来,制备具有定制表面形态的单分散聚(乳酸-乙醇酸)-聚乙二醇(PLGA-PEG)/聚(乳酸-乙醇酸)(PLGA)微球。通过调整 PLGA-PEG 与 PLGA 的质量比、稳定剂的浓度和 PLGA 的类型,我们生成了具有各种独特折叠形态的微球,如“鱼尾状”、“花边状”和“海绵状”多孔结构。此外,我们证明了具有这些折叠形态的利培酮负载的 PLGA-PEG/PLGA 微球显著增强了药物释放,特别是在初始阶段,呈现出对数释放曲线。这一特性可能解决缓释制剂中常见的延迟释放问题。本研究提出了一种简单而有效的方法来构建精确设计的微球,从而更好地控制药物释放动力学。