文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

可生物降解聚酯:提高生物医学应用降解速率的方法

Biodegradable Polyesters: Approaches to Increase Degradation Rates for Biomedical Applications.

作者信息

Roberts Courteney T, Grunlan Melissa A

机构信息

Department of Biomedical Engineering Texas A&M University, College Station, Texas 77843-3003, United States.

Department of Biomedical Engineering, Department of Materials Science & Engineering, Department of Chemistry Texas A&M University, College Station, Texas 77843-3003, United States.

出版信息

ACS Macro Lett. 2025 Aug 19;14(8):1221-1240. doi: 10.1021/acsmacrolett.5c00417. Epub 2025 Aug 10.


DOI:10.1021/acsmacrolett.5c00417
PMID:40783929
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12369017/
Abstract

The rate of biodegradation of polyesters is essential to their utility in biomedical applications but is frequently undesirably slow, prompting significant interest in overcoming this limitation. Herein, we highlight passive, enzyme-mediated, and load-mediated mechanisms of the hydrolytic degradation of polyesters. Exemplified by recent reports, strategies to impart accelerated rates of degradation are discussed, including synthetic routes, 3D systems, and processing methods. Approaches to assess polyester degradation and are summarized, underscoring the need for careful consideration of testing parameters and the challenges arising from testing variability employed within the reported literature. Recent reports also highlight faster-degrading polyester systems for targeted biomedical applications, including regenerative engineering, drug delivery, women's health, and other medical devices. Overall, polyesters with accelerated rates of degradation will afford tremendous opportunities in bioresorbable devices and therapeutics.

摘要

聚酯的生物降解速率对于其在生物医学应用中的效用至关重要,但往往慢得不合人意,这引发了人们对克服这一局限性的浓厚兴趣。在此,我们重点介绍聚酯水解降解的被动、酶介导和负载介导机制。以近期报道为例,讨论了赋予加速降解速率的策略,包括合成路线、3D系统和加工方法。总结了评估聚酯降解的方法,并强调了仔细考虑测试参数的必要性以及文献报道中测试变异性所带来的挑战。近期报道还突出了用于靶向生物医学应用的降解更快的聚酯系统,包括再生工程、药物递送、女性健康和其他医疗设备。总体而言,具有加速降解速率的聚酯将在生物可吸收装置和治疗方面提供巨大机遇。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d4f/12369017/7579e71a197b/mz5c00417_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d4f/12369017/57d8351bed67/mz5c00417_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d4f/12369017/9e0ffd9d0768/mz5c00417_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d4f/12369017/87b5e175e39e/mz5c00417_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d4f/12369017/7579e71a197b/mz5c00417_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d4f/12369017/57d8351bed67/mz5c00417_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d4f/12369017/9e0ffd9d0768/mz5c00417_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d4f/12369017/87b5e175e39e/mz5c00417_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d4f/12369017/7579e71a197b/mz5c00417_0004.jpg

相似文献

[1]
Biodegradable Polyesters: Approaches to Increase Degradation Rates for Biomedical Applications.

ACS Macro Lett. 2025-8-19

[2]
Polyester nanoparticles delivering chemotherapeutics: Learning from the past and looking to the future to enhance their clinical impact in tumor therapy.

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2024

[3]
Carboxylic ester hydrolases from Antarctic psychrophilic Psychrobacter strains: From genome prospecting to biotreatment of polyester plastics.

Bioresour Technol. 2025-11

[4]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[5]
Biodegradable hyperbranched polyesters of trimethylolpropane with acrylate side chains enabling sustainable gel materials and nanomaterials for drug delivery applications.

J Mater Chem B. 2025-7-16

[6]
Biodegradable enzyme-mimicking nanocatalysts: From degradation behavior to theranostic applications.

Acta Biomater. 2025-8

[7]
Biodegradable polyphosphazene biomaterials for tissue engineering and delivery of therapeutics.

Biomed Res Int. 2014

[8]
Biomechanical evaluation of biodegradable PCL cog threads for prolapse rehabilitation.

Proc Inst Mech Eng H. 2025-7

[9]
Design, fabrication, andevaluation of a 3D printed, bio-absorbable PLA tibia bone implant with a novel lattice structure.

Biomed Phys Eng Express. 2025-8-13

[10]
Characterization and release modelling in ELR-based nanocomposite hydrogel loaded with polylactic acid for the implementation of a biomedical device.

Int J Biol Macromol. 2025-9

本文引用的文献

[1]
Osteoarthritis.

Nat Rev Dis Primers. 2025-2-13

[2]
Biodegradable Stents in the Treatment of Arterial Stenosis.

J Clin Med. 2025-1-16

[3]
Polycaprolactone for Hard Tissue Regeneration: Scaffold Design and In Vivo Implications.

Bioengineering (Basel). 2025-1-8

[4]
Construction of bFGF/heparin and FeO nanoparticles functionalized scaffolds aiming at vascular repair and magnetic resonance imaging monitoring.

Int J Biol Macromol. 2025-1

[5]
An In Vivo Assessment of Different Mesenchymal Stromal Cell Tissue Types and Their Differentiation State on a Shape Memory Polymer Scaffold for Bone Regeneration.

J Biomed Mater Res B Appl Biomater. 2024-12

[6]
Optimizing scaffold pore size for tissue engineering: insights across various tissue types.

Front Bioeng Biotechnol. 2024-11-12

[7]
Weaving the next generation of (bio)materials: Semi-interpenetrated and interpenetrated polymeric networks for biomedical applications.

Adv Colloid Interface Sci. 2023-10-21

[8]
Review on Biodegradable Aliphatic Polyesters: Development and Challenges.

Macromol Rapid Commun. 2024-12

[9]
Electrospun PCL/Alginate/Nanoclay Nerve Conduit with Olfactory Ectomesenchymal Stem Cells for Nerve Regeneration.

ACS Appl Bio Mater. 2024-11-18

[10]
Biocompatibility and Bone Regeneration by Shape Memory Polymer Scaffolds.

J Biomed Mater Res A. 2025-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索