Sylvester Comprehensive Cancer Center, Biomedical Research Building, 1501 NW 10th Avenue, Miami, FL 33136, U.S.A.
Division of Hematology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, U.S.A.
Biochem Soc Trans. 2024 Oct 30;52(5):2179-2191. doi: 10.1042/BST20240177.
Histones are essential for maintaining chromatin structure and function. Histone mutations lead to changes in chromatin compaction, gene expression, and the recruitment of DNA repair proteins to the DNA lesion. These disruptions can impair critical DNA repair pathways, such as homologous recombination and non-homologous end joining, resulting in increased genomic instability, which promotes an environment favorable to tumor development and progression. Understanding these mechanisms underscores the potential of targeting DNA repair pathways in cancers harboring mutated histones, offering novel therapeutic strategies to exploit their inherent genomic instability for better treatment outcomes. Here, we examine how mutations in histone H3 disrupt normal chromatin function and DNA damage repair processes and how these mechanisms can be exploited for therapeutic interventions.
组蛋白对于维持染色质结构和功能至关重要。组蛋白突变导致染色质紧缩、基因表达和 DNA 修复蛋白向 DNA 损伤部位的募集发生改变。这些干扰会破坏关键的 DNA 修复途径,如同源重组和非同源末端连接,从而导致基因组不稳定性增加,促进有利于肿瘤发生和发展的环境。了解这些机制突显了靶向携带突变组蛋白的癌症中的 DNA 修复途径的潜力,为利用其固有的基因组不稳定性获得更好的治疗效果提供了新的治疗策略。在这里,我们研究了 H3 组蛋白突变如何破坏正常的染色质功能和 DNA 损伤修复过程,以及如何利用这些机制进行治疗干预。