Suppr超能文献

自组装单分子层界面偶极诱导的单个超薄硅的横向电子结

Lateral Electronic Junction of a Single Ultrathin Silicon Induced by Interfacial Dipole of Self-Assembled Monolayer.

作者信息

Han Junghyup, Lee Won Hyung, Park Junwoo, Jin Huding, Cho Yong Hyun, Yu Seungyeon, Li Lianghui, Lee Jaewon, Woo Gunhoo, Kim Taesung, Kim Youn Sang

机构信息

Department of Chemical and Biological Engineering, College of Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.

Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.

出版信息

Adv Sci (Weinh). 2024 Nov;11(41):e2403970. doi: 10.1002/advs.202403970. Epub 2024 Sep 9.

Abstract

Interface engineering is pivotal for enhancing the performance and stability of devices with layered structures, including solar cells, electronic devices, and electrochemical systems. Incorporating the interfacial dipole between the bulk layers effectively modulates the energy level difference at the interface and does not significantly influence adjacent layers overall. However, interfaces can drastically affect adjoining layers in ultrathin devices, which are essential for next-generation electronics with high integrity, excellent performance, and low power consumption. In particular, the interfacial effect is pronounced in ultrathin semiconductors, which have a weak electric field screening effect. Herein, the substantial interfacial impact on the ultrathin silicon is shown, the p- to n-type inversion of the semiconductor solely through the deposition of a self-assembled monolayer (SAM) without external bias. The effects of SAMs with different interfacial dipoles are investigated by using Hall measurement and surface analytic techniques, such as UPS, XPS, and KPFM. Furthermore, the lateral electronic junction of the ultrathin silicon is engineered by the regioselective deposition of SAMs with opposite dipoles, and the device exhibits rectification behavior. When the interfacial dipole of SAM is manipulated, the rectification ratio changes sensitively, and thus the fabricated diode shows potential to be developed as a sensing platform.

摘要

界面工程对于提高具有层状结构的器件(包括太阳能电池、电子器件和电化学系统)的性能和稳定性至关重要。在体层之间引入界面偶极可有效调节界面处的能级差,并且总体上不会对相邻层产生显著影响。然而,界面会对超薄器件中的相邻层产生巨大影响,而超薄器件对于具有高完整性、卓越性能和低功耗的下一代电子产品至关重要。特别是,界面效应在具有弱电场屏蔽效应的超薄半导体中尤为明显。在此,展示了对超薄硅的显著界面影响,即仅通过自组装单层(SAM)的沉积而无需外部偏压就能使半导体从p型转变为n型。通过使用霍尔测量以及表面分析技术(如紫外光电子能谱(UPS)、X射线光电子能谱(XPS)和开尔文探针力显微镜(KPFM))来研究具有不同界面偶极的SAM的影响。此外,通过具有相反偶极的SAM的区域选择性沉积来设计超薄硅的横向电子结,该器件表现出整流行为。当SAM的界面偶极被操纵时,整流比会敏感地变化,因此所制造的二极管显示出有潜力被开发成为一个传感平台。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f505/11538666/9dd1d14ffea6/ADVS-11-2403970-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验