Sharma Shravan Kumar, Chen Hsing-Ta
Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA.
J Chem Phys. 2024 Sep 14;161(10). doi: 10.1063/5.0225434.
Strong light-matter coupling within an optical cavity leverages the collective interactions of molecules and confined electromagnetic fields, giving rise to the possibilities of modifying chemical reactivity and molecular properties. While collective optical responses, such as enhanced Rabi splitting, are often observed, the overall effect of the cavity on molecular systems remains ambiguous for a large number of molecules. In this paper, we investigate the non-adiabatic electron transfer process in electron donor-acceptor pairs influenced by collective excitation and local molecular dynamics. Using the timescale difference between reorganization and thermal fluctuations, we derive analytical formulas for the electron transfer rate constant and the polariton relaxation rate. These formulas apply to any number of molecules (N) and account for the collective effect as induced by cavity photon coupling. Our findings reveal a non-monotonic dependence of the rate constant on N, which can be understood by the interplay between electron transfer and polariton relaxation. As a result, the cavity-induced quantum yield increases linearly with N for small N (as predicted by a simple Dicke model) but shows a turnover and suppression for large N. We also interrelate the thermal bath frequency and the number of molecules, suggesting the optimal number for maximizing enhancement. The analysis provides an analytical insight for understanding the collective excitation of light and electron transfer, helping to predict the optimal condition for effective cavity-controlled chemical reactivity.
光学腔内的强光-物质耦合利用了分子与受限电磁场的集体相互作用,从而带来了改变化学反应性和分子性质的可能性。虽然常常能观察到集体光学响应,比如增强的拉比分裂,但对于大量分子而言,腔对分子系统的整体影响仍不明确。在本文中,我们研究了受集体激发和局域分子动力学影响的电子供体-受体对中的非绝热电子转移过程。利用重组与热涨落之间的时间尺度差异,我们推导了电子转移速率常数和极化子弛豫速率的解析公式。这些公式适用于任意数量的分子(N),并考虑了腔光子耦合所诱导的集体效应。我们的研究结果揭示了速率常数对N的非单调依赖性,这可以通过电子转移与极化子弛豫之间的相互作用来理解。因此,对于小的N,腔诱导的量子产率随N线性增加(如简单迪克模型所预测),但对于大的N则出现转折并受到抑制。我们还关联了热库频率与分子数量,提出了实现最大增强效果的最佳分子数量。该分析为理解光的集体激发和电子转移提供了一种解析性见解,有助于预测有效控制化学反应性的最佳条件。