Suppr超能文献

受限电磁场中的电子转移。

Electron transfer in confined electromagnetic fields.

作者信息

Semenov Alexander, Nitzan Abraham

机构信息

Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.

出版信息

J Chem Phys. 2019 May 7;150(17):174122. doi: 10.1063/1.5095940.

Abstract

The interaction between molecular (atomic) electron(s) and the vacuum field of a reflective cavity generates significant interest, thanks to the rapid developments in nanophotonics. Such interaction which lies within the realm of cavity quantum electrodynamic can substantially affect the transport properties of molecular systems. In this work, we consider a nonadiabatic electron transfer process in the presence of a cavity mode. We present a generalized framework for the interaction between a charged molecular system and a quantized electromagnetic field of a cavity and apply it to the problem of electron transfer between a donor and an acceptor placed in a confined vacuum electromagnetic field. The effective system Hamiltonian corresponds to a unified Rabi and spin-boson model which includes a self-dipole energy term. Two limiting cases are considered: one where the electron is assumed much faster than the cavity mode and another in which the electron tunneling time is significantly larger than the mode period. In both cases, a significant rate enhancement can be produced by coupling to the cavity mode in the Marcus inverted region. The results of this work offer new possibilities for controlling electron transfer processes using visible and infrared plasmonics.

摘要

由于纳米光子学的迅速发展,分子(原子)电子与反射腔的真空场之间的相互作用引起了人们极大的兴趣。这种属于腔量子电动力学范畴的相互作用会显著影响分子系统的输运性质。在这项工作中,我们考虑在存在腔模的情况下的非绝热电子转移过程。我们提出了一个关于带电分子系统与腔的量子化电磁场之间相互作用的广义框架,并将其应用于置于受限真空电磁场中的供体和受体之间的电子转移问题。有效的系统哈密顿量对应于一个统一的拉比和自旋 - 玻色子模型,该模型包含一个自偶极能量项。我们考虑了两种极限情况:一种是假设电子比腔模快得多,另一种是电子隧穿时间明显大于模周期。在这两种情况下,在马库斯反转区域中通过与腔模耦合都可以产生显著的速率增强。这项工作的结果为利用可见光和红外等离子体激元控制电子转移过程提供了新的可能性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验