Suppr超能文献

肿瘤患者中支持性护理药物的药物不良反应及药物相关问题

Adverse drug reactions and drug-related problems with supportive care medications among the oncological population.

作者信息

Tajani Batoul Barari, Maheswari E, Maka Vinayak V, Nair Anjana S

机构信息

Department of Pharmacy Practice, Faculty of Pharmacy, M S Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India.

Department of Medical Oncology, M S Ramaiah Medical College Hospital, Bengaluru, Karnataka, India.

出版信息

Discov Oncol. 2024 Sep 9;15(1):416. doi: 10.1007/s12672-024-01300-w.

Abstract

AIM

The current study emphasizes the impact of adverse drug reactions (ADRs) and Drug-Related Problems (DRPs) caused by supportive care medications administered with chemotherapy.

METHOD

This is a longitudinal observational study carried out at the Ramaiah Medical College Hospital in Bengaluru, Karnataka, India, at the Department of Oncology. The data was recorded using a specifically created data collecting form. Based on the PCNE (Pharmaceutical Care Network Europe), DRPs are identified. The WHO probability scale, Modified Hartwig and Siegel for ADR severity assessment, Naranjo's algorithm for causality assessment, Rawlins and Thompson for predictability assessment, and Modified Shumock and Thornton for preventability assessment were all utilized. The OncPal guideline was considered in terms of the precision of supportive care medications regarding the reduction of ADRs in cancer patients.

RESULT

We enrolled 302 patients,166 (55%) female and 136 (45%) male (SD 14.378) (mean 49.97), patients with one comorbidity 59(19.6%) and multimorbidity (two or more) 45(14.9%), the DRPs identified were found to be 153 (50.6%); only P2 (safeties of drug therapy PCNE) were considered in this study. ADRs which are identified 175(57.9%) contributed/caused by the supportive care medications. WHO probability scale: 97 (32.1%) possible and 60 (19.9%) unlikely; Naranjo's algorithm: 97 (32.1%) unlikely and 69 (22.8%) possible; ADR severity assessment scale (Modified Hartwig and Siegel): 95 (31.5%) mild and 63 (20.9%) moderates; Rawlins and Thompson for determining predictability of an ADR: 33 (10.9%) predictable and 137 (45.5%) non-predictable; and Modified Shumock and Thornton for determining preventability of an ADR: 81 (26.8%) probably preventable and 90 (29.8%) non-preventable. The statistical comparison through preforming t-test and measuring Chi-Square between group with ADRs and without ADRs shows in some variables, significantly (Alcohol consumption status, P = .019) and Easter Cooperative Oncology Group (ECOG) performance status P < 0.001.

CONCLUSION

Comprehensive assessment of supportive medications in cancer patients would enhance the patient management and therapeutic outcome. The potential adverse drug reactions (ADRs) caused by supportive care medications can contribute to longer hospital stays and interact with the systemic anti-cancer treatment. The health care professionals should be informed to monitor the patients clinically administered with supportive medications.

摘要

目的

本研究着重探讨化疗辅助治疗药物引起的药物不良反应(ADR)和药物相关问题(DRP)的影响。

方法

这是一项在印度卡纳塔克邦班加罗尔拉马亚医学院医院肿瘤科开展的纵向观察性研究。数据通过专门设计的数据收集表进行记录。基于欧洲药学保健网络(PCNE)来识别DRP。使用了世界卫生组织概率量表、改良的哈特维希和西格尔量表进行ADR严重程度评估、纳朗霍算法进行因果关系评估、罗林斯和汤普森量表进行可预测性评估以及改良的舒莫克和桑顿量表进行可预防性评估。在癌症患者中,就辅助治疗药物减少ADR的精准度方面,参考了OncPal指南。

结果

我们纳入了302例患者,其中女性166例(55%),男性136例(45%)(标准差14.378)(平均49.97岁),患有一种合并症的患者59例(19.6%),患有多种合并症(两种或更多)的患者45例(14.9%),所识别出的DRP有153例(50.6%);本研究仅考虑了P2(药物治疗安全性,PCNE)。所识别出的175例(57.9%)ADR由辅助治疗药物导致。世界卫生组织概率量表:97例(32.1%)可能,60例(19.9%)不太可能;纳朗霍算法:97例(32.1%)不太可能,69例(22.8%)可能;ADR严重程度评估量表(改良的哈特维希和西格尔量表):95例(31.5%)轻度,63例(20.9%)中度;罗林斯和汤普森用于确定ADR的可预测性:33例(10.9%)可预测,137例(45.5%)不可预测;改良的舒莫克和桑顿用于确定ADR的可预防性:81例(26.8%)可能可预防,90例(29.8%)不可预防。通过对有ADR组和无ADR组进行t检验和卡方测量的统计比较显示,在一些变量上存在显著差异(饮酒状况,P = 0.019)以及东部肿瘤协作组(ECOG)体能状态(P < 0.001)。

结论

对癌症患者的辅助用药进行全面评估可改善患者管理和治疗效果。辅助治疗药物引起的潜在药物不良反应(ADR)可能导致住院时间延长,并与全身抗癌治疗相互作用。应告知医护人员对接受辅助用药治疗的患者进行临床监测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8afb/11383904/e6a582aeac0b/12672_2024_1300_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验