Yao Zhifu, Qiu Wenbin, Chen Chen, Bao Xin, Luo Kaiyi, Deng Yong, Xue Wenhua, Li Xiaofang, Hu Qiujun, Guo Junbiao, Yang Lei, Hu Wenyu, Wang Xiaoyi, Liu Xingjun, Zhang Qian, Tanigaki Katsumi, Tang Jun
Department of Fundamental Courses, Wuxi Institute of Technology, WuXi, 214121, China.
School of Materials Science and Engineering, and Institute of Materials Genome & Big Data, Harbin Institute of Technology, Shenzhen, 518055, China.
Adv Sci (Weinh). 2024 Nov;11(41):e2403705. doi: 10.1002/advs.202403705. Epub 2024 Sep 9.
Thermoelectric generators held great promise through energy harvesting from waste heat. Their practical application, however, is greatly constrained by poor raw material utilization and tedious processing in fabricating desired shapes. Herein, a state-of-the-art process is reported for 3D printing the half-Heusler (NbHfFeSb) thermoelectric material using laser powder bed fusion (LPBF). The multi-dimensional intra- and inter-granular defects created by this process greatly suppress thermal conductivity by providing numerous phonon scattering centers. The resulting LPBF-fabricated half-Heusler exhibits a high figure of merit ≈1.2 at 923 K and a single-leg maximum efficiency of ≈3.3% at a temperature difference (ΔT) of 371 K. Hafnium oxide nanoparticles generated during LPBF effectively prevent crack propagation, ensuring competent mechanical performance and reliable thermoelectric output. The findings highlight the significant potential of LPBF in driving the next industrial revolution of highly efficient and customizable thermoelectric materials.
热电发电机通过从废热中收集能量展现出了巨大的潜力。然而,其实际应用受到原材料利用率低和制造所需形状时加工繁琐的极大限制。在此,报道了一种使用激光粉末床熔融(LPBF)3D打印半赫斯勒(NbHfFeSb)热电材料的先进工艺。该工艺产生的多维晶内和晶间缺陷通过提供大量声子散射中心极大地抑制了热导率。由此通过LPBF制造的半赫斯勒在923K时具有约1.2的高优值,在371K的温差(ΔT)下单腿最大效率约为3.3%。LPBF过程中产生的氧化铪纳米颗粒有效防止了裂纹扩展,确保了良好的机械性能和可靠的热电输出。这些发现突出了LPBF在推动高效且可定制热电材料的下一次工业革命方面的巨大潜力。