Suppr超能文献

新冠疫情期间流动性风险和信用风险对银行盈利能力的影响。

The impact of liquidity risk and credit risk on bank profitability during COVID-19.

机构信息

School of Finance and Economics, Jiangsu University, Zhenjiang, China.

Institute of Banking & Finance, Bahauddin Zakariya University, Multan, Pakistan.

出版信息

PLoS One. 2024 Sep 9;19(9):e0308356. doi: 10.1371/journal.pone.0308356. eCollection 2024.

Abstract

The COVID-19 outbreak caused a massive setback to the stability of financial system due to emergence of several other risks with COVID, which significantly influenced the continuity of profitable banking operations. Therefore, this study aims to see that how differently the liquidity risk and credit risk influenced the banking profitability during Covid-19 (Q12020 to Q42021) than before COVID (Q12018 to Q42019). The study employs pooled OLS, and OLS fixed & random effects models, to analyze the panel data on a sample of 37 banks currently operating in Pakistan. The results depict that liquidity risk has a positive and significant relationship with return on assets and return on equity, but insignificant relationship with net interest margin. Credit risk has a negative and significant relationship with return on assets, return on equity, and net interest margin. The study also applies quantile regression to address the normality issue in data. The quantile regression results are consistent with pooled OLS, and OLS fixed and random effects results. The study makes valuable suggestions for regulators, policymakers, and others users of financial institutional data. The current study will help to set policies for efficient management of LR and CR.

摘要

由于 COVID 带来的其他风险,COVID-19 疫情的爆发对金融体系的稳定造成了巨大的冲击,这显著影响了有利可图的银行业务的连续性。因此,本研究旨在探讨在 COVID-19 期间(2020 年第一季度至 2021 年第四季度),流动性风险和信用风险对银行业盈利能力的影响与 COVID 之前(2018 年第一季度至 2019 年第四季度)有何不同。该研究采用了面板数据的 pooled OLS、OLS 固定效应和随机效应模型,对目前在巴基斯坦运营的 37 家银行的样本数据进行了分析。结果表明,流动性风险与资产回报率和股本回报率呈正相关且显著,但与净息差呈不显著关系。信用风险与资产回报率、股本回报率和净息差呈负相关且显著。该研究还应用了分位数回归来解决数据的正态性问题。分位数回归结果与 pooled OLS、OLS 固定效应和随机效应结果一致。本研究为监管机构、政策制定者和其他金融机构数据使用者提供了有价值的建议。本研究将有助于制定有效的流动性风险和信用风险管理政策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72ac/11383245/5e636a75dc6e/pone.0308356.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验