Glasgow Caledonian University, Glasgow, United Kingdom.
Public Health Scotland, Edinburgh, United Kingdom.
J Acquir Immune Defic Syndr. 2024 Oct 1;97(2):117-124. doi: 10.1097/QAI.0000000000003479.
To inform global ambitions to end AIDS, evaluation of progress toward HIV incidence reduction requires robust methods to measure incidence. Although HIV diagnosis date in routine HIV/AIDS surveillance systems are often used as a surrogate marker for incidence, it can be misleading if acquisition of transmission occurred years before testing. Other information present in data such as antibody testing dates, avidity testing result, and CD4 counts can assist, but the degree of missing data is often prohibitive.
We constructed a Bayesian statistical model to estimate the annual proportion of first ever HIV diagnoses in Scotland (period 2015-2019) that represent recent HIV infection (ie, occurring within the previous 3-4 months) and incident HIV infection (ie, infection within the previous 12 months), by synthesizing avidity testing results and surveillance data on the interval since last negative HIV test.
Over the 5-year analysis period, the model-estimated proportion of incident infection was 43.9% (95% CI: 40.9 to 47.0), and the proportion of recent HIV infection was 21.6% (95% CI: 19.1 to 24.1). Among the mode of HIV acquisition categories, the highest proportion of recent infection was estimated for people who inject drugs: 27.4% (95% CI: 20.4 to 34.4).
The Bayesian approach is appropriate for the high prevalence of missing data that can occur in routine surveillance data sets. The proposed model will aid countries in improving their understanding of the number of people who have recently acquired their infection, which is needed to progress toward the goal of HIV transmission elimination.
为了推动全球终结艾滋病的目标,评估减少 HIV 发病率的进展情况需要采用强有力的方法来衡量发病率。虽然常规 HIV/AIDS 监测系统中的 HIV 诊断日期通常被用作发病率的替代指标,但如果感染是在检测前数年发生的,那么这可能会产生误导。数据中存在的其他信息,如抗体检测日期、亲和力检测结果和 CD4 计数,可以提供帮助,但数据缺失的程度往往令人望而却步。
我们构建了一个贝叶斯统计模型,通过综合亲和力检测结果和关于上次阴性 HIV 检测以来的间隔的监测数据,来估计苏格兰(2015-2019 年期间)首次 HIV 诊断中代表近期 HIV 感染(即过去 3-4 个月内发生的感染)和新发 HIV 感染(即过去 12 个月内发生的感染)的比例。
在 5 年的分析期间,模型估计的新发感染比例为 43.9%(95%CI:40.9 至 47.0),近期 HIV 感染比例为 21.6%(95%CI:19.1 至 24.1)。在 HIV 获得途径类别中,估计最近感染比例最高的是注射毒品的人群:27.4%(95%CI:20.4 至 34.4)。
贝叶斯方法适用于常规监测数据集可能出现的高缺失数据。所提出的模型将有助于各国更好地了解最近感染的人数,这是朝着 HIV 传播消除目标迈进所必需的。