Suppr超能文献

通过基于人工智能的3D T1磁共振成像容积分析实现特发性正常压力脑积水的自动化诊断

Automated Idiopathic Normal Pressure Hydrocephalus Diagnosis via Artificial Intelligence-Based 3D T1 MRI Volumetric Analysis.

作者信息

Lee Joonhyung, Kim Dana, Suh Chong Hyun, Yun Suyoung, Choi Kyu Sung, Lee Seungjun, Jung Wooseok, Kim Jinyoung, Heo Hwon, Shim Woo Hyun, Jo Sungyang, Chung Sun Ju, Lim Jae-Sung, Kim Ho Sung, Kim Sang Joon, Lee Jae-Hong

机构信息

From the NAVER Cloud Inc (J.L.), Seoul, Republic of Korea.

VUNO Inc (J.L., S.L., W.J., J.K.), Seoul, Republic of Korea.

出版信息

AJNR Am J Neuroradiol. 2025 Jan 8;46(1):33-40. doi: 10.3174/ajnr.A8489.

Abstract

BACKGROUND AND PURPOSE

Idiopathic normal pressure hydrocephalus (iNPH) is reversible dementia that is underdiagnosed. The purpose of this study was to develop an automated diagnostic method for iNPH using artificial intelligence techniques with a T1-weighted MRI scan.

MATERIALS AND METHODS

We quantified iNPH, Parkinson disease, Alzheimer disease, and healthy controls on T1-weighted 3D brain MRI scans using 452 scans for training and 110 scans for testing. Automatic component measurement algorithms were developed for the Evans index, Sylvian fissure enlargement, high-convexity tightness, callosal angle, and normalized lateral ventricle volume. XGBoost models were trained for both automated measurements and manual labels for iNPH prediction.

RESULTS

A total of 452 patients (200 men; mean age, 73.2 [SD, 6.5] years) were included in the training set. Of the 452 patients, 111 (24.6%) had iNPH. We obtained area under the curve (AUC) values of 0.956 for automatically measured high-convexity tightness and 0.830 for Sylvian fissure enlargement. Intraclass correlation values of 0.824 for the callosal angle and 0.924 for the Evans index were measured. By means of the decision tree of the XGBoost model, the model trained on manual labels obtained an average cross-validation AUC of 0.988 on the training set and 0.938 on the unseen test set, while the fully automated model obtained a cross-validation AUC of 0.983 and an unseen test AUC of 0.936.

CONCLUSIONS

We demonstrated a machine learning algorithm capable of diagnosing iNPH from a 3D T1-weighted MRI that is robust to the failure. We propose a method to scan large numbers of 3D T1-weighted MRIs with minimal human intervention, making possible large-scale iNPH screening.

摘要

背景与目的

特发性正常压力脑积水(iNPH)是一种诊断不足的可逆性痴呆。本研究的目的是利用人工智能技术和T1加权磁共振成像(MRI)扫描开发一种iNPH的自动诊断方法。

材料与方法

我们使用452例扫描图像进行训练,110例扫描图像进行测试,对T1加权三维脑MRI扫描上的iNPH、帕金森病、阿尔茨海默病和健康对照进行量化。针对埃文斯指数、大脑外侧裂增宽、高凸部紧密性、胼胝体角和标准化侧脑室体积开发了自动成分测量算法。使用XGBoost模型对iNPH预测的自动测量值和手动标注值进行训练。

结果

训练集共纳入452例患者(200名男性;平均年龄73.2 [标准差,6.5]岁)。在这452例患者中,111例(24.6%)患有iNPH。自动测量的高凸部紧密性的曲线下面积(AUC)值为0.956,大脑外侧裂增宽的AUC值为0.830。胼胝体角的组内相关值为0.824,埃文斯指数的组内相关值为0.924。通过XGBoost模型的决策树,基于手动标注训练的模型在训练集上的平均交叉验证AUC为0.988,在未见过的测试集上为0.938,而全自动模型的交叉验证AUC为0.983,未见过的测试AUC为0.936。

结论

我们展示了一种能够从三维T1加权MRI诊断iNPH的机器学习算法,该算法对失败具有鲁棒性。我们提出了一种在最少人工干预的情况下扫描大量三维T1加权MRI的方法,使得大规模iNPH筛查成为可能。

相似文献

2
Enhancing Preoperative Diagnosis of Subscapular Muscle Injuries with Shoulder MRI-based Multimodal Radiomics.
Acad Radiol. 2025 Feb;32(2):907-915. doi: 10.1016/j.acra.2024.09.049. Epub 2024 Oct 5.
3
Artificial intelligence for diagnosing exudative age-related macular degeneration.
Cochrane Database Syst Rev. 2024 Oct 17;10(10):CD015522. doi: 10.1002/14651858.CD015522.pub2.
4
qDESH: a method to quantify disproportionately enlarged subarachnoid space hydrocephalus.
Fluids Barriers CNS. 2025 Jul 1;22(1):67. doi: 10.1186/s12987-025-00677-2.
5
Predicting cognitive decline: Deep-learning reveals subtle brain changes in pre-MCI stage.
J Prev Alzheimers Dis. 2025 May;12(5):100079. doi: 10.1016/j.tjpad.2025.100079. Epub 2025 Feb 6.
7
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.
Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3.
8
Semi-Supervised Learning Allows for Improved Segmentation With Reduced Annotations of Brain Metastases Using Multicenter MRI Data.
J Magn Reson Imaging. 2025 Jun;61(6):2469-2479. doi: 10.1002/jmri.29686. Epub 2025 Jan 10.

引用本文的文献

1
Automated Deep Learning Pipeline for Callosal Angle Quantification.
medRxiv. 2025 Aug 21:2025.08.18.25333901. doi: 10.1101/2025.08.18.25333901.

本文引用的文献

2
Utility of Machine Learning in the Management of Normal Pressure Hydrocephalus: A Systematic Review.
World Neurosurg. 2023 Sep;177:e480-e492. doi: 10.1016/j.wneu.2023.06.080. Epub 2023 Jun 24.
3
Risk estimation for idiopathic normal-pressure hydrocephalus: development and validation of a brain morphometry-based nomogram.
Eur Radiol. 2023 Sep;33(9):6145-6156. doi: 10.1007/s00330-023-09612-1. Epub 2023 Apr 15.
5
Outcomes of Ventriculoperitoneal Shunt in Patients With Idiopathic Normal-Pressure Hydrocephalus 2 Years After Surgery.
Front Surg. 2021 Nov 15;8:641561. doi: 10.3389/fsurg.2021.641561. eCollection 2021.
9
SVM-Based Normal Pressure Hydrocephalus Detection.
Clin Neuroradiol. 2021 Dec;31(4):1029-1035. doi: 10.1007/s00062-020-00993-0. Epub 2021 Jan 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验