Lee Joonhyung, Kim Dana, Suh Chong Hyun, Yun Suyoung, Choi Kyu Sung, Lee Seungjun, Jung Wooseok, Kim Jinyoung, Heo Hwon, Shim Woo Hyun, Jo Sungyang, Chung Sun Ju, Lim Jae-Sung, Kim Ho Sung, Kim Sang Joon, Lee Jae-Hong
From the NAVER Cloud Inc (J.L.), Seoul, Republic of Korea.
VUNO Inc (J.L., S.L., W.J., J.K.), Seoul, Republic of Korea.
AJNR Am J Neuroradiol. 2025 Jan 8;46(1):33-40. doi: 10.3174/ajnr.A8489.
Idiopathic normal pressure hydrocephalus (iNPH) is reversible dementia that is underdiagnosed. The purpose of this study was to develop an automated diagnostic method for iNPH using artificial intelligence techniques with a T1-weighted MRI scan.
We quantified iNPH, Parkinson disease, Alzheimer disease, and healthy controls on T1-weighted 3D brain MRI scans using 452 scans for training and 110 scans for testing. Automatic component measurement algorithms were developed for the Evans index, Sylvian fissure enlargement, high-convexity tightness, callosal angle, and normalized lateral ventricle volume. XGBoost models were trained for both automated measurements and manual labels for iNPH prediction.
A total of 452 patients (200 men; mean age, 73.2 [SD, 6.5] years) were included in the training set. Of the 452 patients, 111 (24.6%) had iNPH. We obtained area under the curve (AUC) values of 0.956 for automatically measured high-convexity tightness and 0.830 for Sylvian fissure enlargement. Intraclass correlation values of 0.824 for the callosal angle and 0.924 for the Evans index were measured. By means of the decision tree of the XGBoost model, the model trained on manual labels obtained an average cross-validation AUC of 0.988 on the training set and 0.938 on the unseen test set, while the fully automated model obtained a cross-validation AUC of 0.983 and an unseen test AUC of 0.936.
We demonstrated a machine learning algorithm capable of diagnosing iNPH from a 3D T1-weighted MRI that is robust to the failure. We propose a method to scan large numbers of 3D T1-weighted MRIs with minimal human intervention, making possible large-scale iNPH screening.
特发性正常压力脑积水(iNPH)是一种诊断不足的可逆性痴呆。本研究的目的是利用人工智能技术和T1加权磁共振成像(MRI)扫描开发一种iNPH的自动诊断方法。
我们使用452例扫描图像进行训练,110例扫描图像进行测试,对T1加权三维脑MRI扫描上的iNPH、帕金森病、阿尔茨海默病和健康对照进行量化。针对埃文斯指数、大脑外侧裂增宽、高凸部紧密性、胼胝体角和标准化侧脑室体积开发了自动成分测量算法。使用XGBoost模型对iNPH预测的自动测量值和手动标注值进行训练。
训练集共纳入452例患者(200名男性;平均年龄73.2 [标准差,6.5]岁)。在这452例患者中,111例(24.6%)患有iNPH。自动测量的高凸部紧密性的曲线下面积(AUC)值为0.956,大脑外侧裂增宽的AUC值为0.830。胼胝体角的组内相关值为0.824,埃文斯指数的组内相关值为0.924。通过XGBoost模型的决策树,基于手动标注训练的模型在训练集上的平均交叉验证AUC为0.988,在未见过的测试集上为0.938,而全自动模型的交叉验证AUC为0.983,未见过的测试AUC为0.936。
我们展示了一种能够从三维T1加权MRI诊断iNPH的机器学习算法,该算法对失败具有鲁棒性。我们提出了一种在最少人工干预的情况下扫描大量三维T1加权MRI的方法,使得大规模iNPH筛查成为可能。